17,019 research outputs found

    Electric-arc heater Patent

    Get PDF
    Magnetically diffused radial electric arc heate

    A magnetically rotated electric arc air heater employing a strong magnetic field and copper electrodes

    Get PDF
    Magnetically rotated electric arc air heater using strong magnetic field and copper electrode

    Orbweavers' Differential Responses to a Tuning-Fork

    Get PDF

    Dielectric properties and lattice dynamics of alpha-PbO2-type TiO2: The role of soft phonon modes in pressure-induced phase transition to baddeleyite-type TiO2

    Full text link
    Dielectric tensor and lattice dynamics of alpha-PbO2-type TiO2 have been investigated using the density functional perturbation theory, with a focus on responses of the vibrational frequencies to pressure. The calculated Raman spectra under different pressures are in good agreement with available experimental results and the symmetry assignments of the Raman peaks of alpha-PbO2-type TiO2 are given for the first time. In addition, we identified two anomalously IR-active soft phonon modes, B1u and B3u, respectively, around 200 cm-1 which have not been observed in high pressure experiments. Comparison of the phonon dispersions at 0 and 10 GPa reveals that softening of phonon modes also occurs for the zone-boundary modes. The B1u and B3u modes play an important role in transformation from the alpha-PbO2-type phase to baddeleyite phase. The significant relaxations of the oxygen atoms from the Ti4 plane in the Ti2O2Ti2 complex of the baddeleyite phase are directly correlated to the oxygen displacements along the directions given by the eigenvectors of the soft B1u and B3u modes in the alpha-PbO2-type phase.Comment: 8 pages, 9 figure

    Higgs Boson Exempt No-Scale Supersymmetry and its Collider and Cosmology Implications

    Get PDF
    One of the most straightforward ways to address the flavor problem of low-energy supersymmetry is to arrange for the scalar soft terms to vanish simultaneously at a scale McM_{c} much larger than the electroweak scale. This occurs naturally in a number of scenarios, such as no-scale models, gaugino mediation, and several models with strong conformal dynamics. Unfortunately, the most basic version of this approach that incorporates gaugino mass unification and zero scalar masses at the grand unification scale is not compatible with collider and dark matter constraints. However, experimental constraints can be satisfied if we exempt the Higgs bosons from flowing to zero mass value at the high scale. We survey the theoretical constructions that allow this, and investigate the collider and dark matter consequences. A generic feature is that the sleptons are relatively light. Because of this, these models frequently give a significant contribution to the anomalous magnetic moment of the muon, and neutralino-slepton coannihilation can play an important role in obtaining an acceptable dark matter relic density. Furthermore, the light sleptons give rise to a large multiplicity of lepton events at colliders, including a potentially suggestive clean trilepton signal at the Tevatron, and a substantial four lepton signature at the LHC.Comment: 36 pages, 16 figure

    Fault Slip and Exhumation History of the Willard Thrust Sheet, Sevier Fold‐Thrust Belt, Utah: Relations to Wedge Propagation, Hinterland Uplift, and Foreland Basin Sedimentation

    Get PDF
    Zircon (U‐Th)/He (ZHe) and zircon fission track thermochronometric data for 47 samples spanning the areally extensive Willard thrust sheet within the western part of the Sevier fold‐thrust belt record enhanced cooling and exhumation during major thrust slip spanning approximately 125–90 Ma. ZHe and zircon fission track age‐paleodepth patterns along structural transects and age‐distance relations along stratigraphic‐parallel traverses, combined with thermo‐kinematic modeling, constrain the fault slip history, with estimated slip rates of ~1 km/Myr from 125 to 105 Ma, increasing to ~3 km/Myr from 105 to 92 Ma, and then decreasing as major slip was transferred onto eastern thrusts. Exhumation was concentrated during motion up thrust ramps with estimated erosion rates of ~0.1 to 0.3 km/Myr. Local cooling ages of approximately 160–150 Ma may record a period of regional erosion, or alternatively an early phase of limited... (see full abstract in article)

    Effective-Hamiltonian parameters for \emph{ab initio} energy-level calculations of SrCl2_{2}:Yb2+^{2+} and CsCaBr3_{3}:Yb2+^{2+}

    Full text link
    Calculated energy levels from recent \emph{ab initio} studies of the electronic structure of SrCl2_{2}:Yb2+^{2+} and CsCaBr3_{3}:Yb2+^{2+} are fitted with a semi-empirical "crystal-field" Hamiltonian, which acts within the model space 4f14+4f135d+4f136s4f^{14} + 4f^{13}5d + 4f^{13}6s. Parameters are obtained for the minima of the potential-energy curves for each energy level and also for a range of anion-cation separations. The parameters are compared with published results parameters fitted to experimental data and to atomic calculations. The states with significant 4f136s4f^{13}6s character give a good approximation of the impurity-trapped exciton states that appear in the \emph{ab initio} calculations.Comment: Minor revisio
    corecore