546 research outputs found

    Understanding pattern scaling errors across a range of emissions pathways

    Get PDF
    The regional climate impacts of hypothetical future emissions scenarios can be estimated by combining Earth system model simulations with a linear pattern scaling model such as MESMER (Modular Earth System Model Emulator with spatially Resolved output), which uses estimated patterns of the local response per degree of global temperature change. Here we use the mean trend component of MESMER to emulate the regional pattern of the surface temperature response based on historical single-forcer and future Shared Socioeconomic Pathway (SSP) CMIP6 (Coupled Model Intercomparison Project Phase 6) simulations. Errors in the emulations for selected target scenarios (SSP1–1.9, SSP1–2.6, SSP2–4.5, SSP3–7.0, and SSP5–8.5) are decomposed into two components, namely (1) the differences in scaling patterns between scenarios as a consequence of varying combinations of external forcings and (2) the intrinsic time series differences between the local and global responses in the target scenario. The time series error is relatively small for high-emissions scenarios, contributing around 20 % of the total error, but is similar in magnitude to the pattern error for lower-emissions scenarios. This irreducible time series error limits the efficacy of linear pattern scaling for emulating strong mitigation pathways and reduces the dependence on the predictor pattern used. The results help guide the choice of predictor scenarios for simple climate models and where to target for the introduction of other dependent variables beyond global surface temperature into pattern scaling models

    Quasiparticle photoemission intensity in doped two-dimensional quantum antiferromagnets

    Full text link
    Using the self-consistent Born approximation, and the corresponding wave function of the magnetic polaron, we calculate the quasiparticle weight corresponding to destruction of a real electron (in contrast to creation of a spinless holon), as a funtion of wave vector for one hole in a generalized t−Jt-J model and the strong coupling limit of a generalized Hubbard model. The results are in excellent agreement with those obtained by exact diagonalization of a sufficiently large cluster. Only the Hubbard weigth compares very well with photoemission measurements in Sr_2CuO_2Cl_2.Comment: 11 pages, latex, 3 figure

    Gamow-Teller Strength Distribution for 37-Cl(p,n)37-Ar

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Progress Report on E356

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    The Gamow-Teller Strength Function for 37-Cl → 37-Ar

    Get PDF
    This research was sponsored by the National Science Foundation Grant NSF PHY-931478

    Electronic localization at mesoscopic length scales: different definitions of localization and contact effects in a heuristic DNA model

    Full text link
    In this work we investigate the electronic transport along model DNA molecules using an effective tight-binding approach that includes the backbone on site energies. The localization length and participation number are examined as a function of system size, energy dependence, and the contact coupling between the leads and the DNA molecule. On one hand, the transition from an diffusive regime to a localized regime for short systems is identified, suggesting the necessity of a further length scale revealing the system borders sensibility. On the other hand, we show that the lenght localization and participation number, do not depended of system size and contact coupling in the thermodynamic limit. Finally we discuss possible length dependent origins for the large discrepancies among experimental results for the electronic transport in DNA sample

    Phenomenology of flavor-mediated supersymmetry breaking

    Get PDF
    The phenomenology of a new economical SUSY model that utilizes dynamical SUSY breaking and gauge-mediation (GM) for the generation of the sparticle spectrum and the hierarchy of fermion masses is discussed. Similarities between the communication of SUSY breaking through a messenger sector, and the generation of flavor using the Froggatt-Nielsen (FN) mechanism are exploited, leading to the identification of vector-like messenger fields with FN fields, and the messenger U(1) as a flavor symmetry. An immediate consequence is that the first and second generation scalars acquire flavor-dependent masses, but do not violate FCNC bounds since their mass scale, consistent with effective SUSY, is of order 10 TeV. We define and advocate a minimal flavor-mediated model (MFMM), recently introduced in the literature, that successfully accommodates the small flavor-breaking parameters of the standard model using order one couplings and ratios of flavon field vevs. The mediation of SUSY breaking occurs via two-loop log-enhanced GM contributions, as well as several one-loop and two-loop Yukawa-mediated contributions for which we provide analytical expressions. The MFMM is parameterized by a small set of masses and couplings, with values restricted by several model constraints and experimental data. The next-to-lightest sparticle (NLSP) always has a decay length that is larger than the scale of a detector, and is either the lightest stau or the lightest neutralino. Similar to ordinary GM models, the best collider search strategies are, respectively, inclusive production of at least one highly ionizing track, or events with many taus plus missing energy. In addition, D^0 - \bar{D}^0 mixing is also a generic low energy signal. Finally, the dynamical generation of the neutrino masses is briefly discussed.Comment: 54 pages, LaTeX, 8 figure

    Quantitative PCR tissue expression profiling of the human SGLT2 gene and related family members

    Get PDF
    SGLT2 (for “Sodium GLucose coTransporter” protein 2) is the major protein responsible for glucose reabsorption in the kidney and its inhibition has been the focus of drug discovery efforts to treat type 2 diabetes. In order to better clarify the human tissue distribution of expression of SGLT2 and related members of this cotransporter class, we performed TaqManℱ (Applied Biosystems, Foster City, CA, USA) quantitative polymerase chain reaction (PCR) analysis of SGLT2 and other sodium/glucose transporter genes on RNAs from 72 normal tissues from three different individuals. We consistently observe that SGLT2 is highly kidney specific while SGLT5 is highly kidney abundant; SGLT1, sodium-dependent amino acid transporter (SAAT1), and SGLT4 are highly abundant in small intestine and skeletal muscle; SGLT6 is expressed in the central nervous system; and sodium myoinositol cotransporter is ubiquitously expressed across all human tissues

    RbR_b and RcR_c in the Two Higgs Doublet Model with Flavor Changing Neutral Currents

    Get PDF
    A study of RbR_b and RcR_c is presented in the context of a Two Higgs Doublet Model (2HDM) with flavor changing scalar currents (FCSC). Implications of the model for the ρ\rho-parameter and for b→sÎłb\to s\gamma are also considered. The experimental data on RbR_b places stringent constraints on the model parameters. The configuration of the model needed to account for RbR_b is found to be irreconcilable with constraints from b→sÎłb\to s\gamma and ρ\rho. In particular, if R^{\rm exp}_b>R^{\sss{\rm SM}}_b persists then this version of 2HDM will be ruled out or require significant modifications. Noting that aspects of the experimental analysis for RbR_b and RcR_c may be of some concern, we also disregard RbexpR^{\rm exp}_b and RcexpR^{\rm exp}_c and give predictions for these using constraints from b→sÎłb\to s\gamma and ρ\rho parameter only. We emphasize the theoretical and experimental advantages of the observable R_{b+c}\equiv \Gamma(Z\to b\bar b\mbox{ or } c\bar c)/\Gamma(Z\to\mbox{hadrons}). We also stress the role of R_\ell\equiv \Gamma(Z\to\mbox{hadrons})/\Gamma(Z\to \ell^+\ell^-) in testing the Standard Model (SM) despite its dependence on QCD corrections. Noting that in models with FCNC the amplitude for Z→ccˉZ\to c\bar c receives a contribution which grows with mt2m^2_t, the importance and uniqueness of precision Z→ccˉZ\to c\bar c measurements for constraining flavor changing tcˉt\bar c currents is underscored.Comment: 35 pages, 5 Postscript figures, 10 Postscript files used in the tex file, uses epsf.st
    • 

    corecore