1,297 research outputs found

    New Cooperative Development Issues

    Get PDF
    This article briefly reviews the increased interest in new cooperative development, factors for successful cooperative development, and strategies to improve the performance of new and emerging cooperatives. The article highlights issues identified by a panel of cooperative leaders, USDA specialists and academic expertsCooperatives, New Cooperatives, Developing Cooperatives, Agribusiness, P13, L22, L43,

    Scanning in Situ Spectroscopy Pplatform for Imaging Surgical Breast Tissue Specimens

    Get PDF
    A non-contact localized spectroscopic imaging platform has been developed and optimized to scan 1 x 1 cm² square regions of surgically resected breast tissue specimens with ~150-micron resolution. A color corrected, image-space telecentric scanning design maintained a consistent sampling geometry and uniform spot size across the entire imaging field. Theoretical modeling in ZEMAX allowed estimation of the spot size, which is equal at both the center and extreme positions of the field with ~5% variation across the designed waveband, indicating excellent color correction. The spot sizes at the center and an extreme field position were also measured experimentally using the standard knife-edge technique and were found to be within ~8% of the theoretical predictions. Highly localized sampling offered inherent insensitivity to variations in background absorption allowing direct imaging of local scattering parameters, which was validated using a matrix of varying concentrations of Intralipid and blood in phantoms. Four representative, pathologically distinct lumpectomy tissue specimens were imaged, capturing natural variations in tissue scattering response within a given pathology. Variations as high as 60% were observed in the average reflectance and relative scattering power images, which must be taken into account for robust classification performance. Despite this variation, the preliminary data indicates discernible scatter power contrast between the benign vs malignant groups, but reliable discrimination of pathologies within these groups would require investigation into additional contrast mechanisms

    External Enrichment of Minihalos by the First Supernovae

    Get PDF
    Recent high-resolution simulations of early structure formation have shown that externally enriched halos may form some of the first metal enriched stars. This study utilizes a 1 comoving Mpc3^3 high-resolution simulation to study the enrichment process of metal-enriched halos down to z=9.3z=9.3. Our simulation uniquely tracks the metals ejected from Population III stars, and we use this information to identify the origin of metals within metal-enriched halos. These halos show a wide range of metallicities, but we find that the source of metals for ≳\gtrsim 50\% of metal-enriched halos is supernova explosions of Population III stars occuring outside their virial radii. The results presented here indicate that external enrichment by metal-free stars dominates the enrichment process of halos with virial mass below 106 M⊙10^{6}\,M_\odot down to z=9.3z=9.3. Despite the prevalence of external enrichment in low mass halos, Pop II stars forming due to external enrichment are rare because of the small contribution of low-mass halos to the global star formation rate combined with low metallicities towards the center of these halos resulting from metal ejecta from external sources mixing from the outside-in. The enriched stars that do form through this process have absolute metallicities below 10−3 Z⊙10^{-3}\,Z_\odot. We also find that the fraction of externally enriched halos increases with time, ∼90%\sim 90\% of halos that are externally enriched have Mvir<106 M⊙M_\mathrm{vir} < 10^6\,M_\odot, and that pair-instability supernovae contribute the most to the enrichment of the IGM as a whole and are thus are the predominant supernova type contributing to the external enrichment of halos.Comment: 15 pages, 12 figures, Accepted for publication in Ap

    Micro-Computed Tomography Enables Rapid Surgical Margin Assessment During Breast Conserving Surgery (BCS): Correlation of Whole BCS Micro-CT Readings to Final Histopathology.

    Get PDF
    BACKGROUND: Roughly 23% of breast conserving surgery (BCS) patients undergo a second re-excision procedure due to pathologically positive surgical margins. We investigated the feasibility and potential value of micro-Computed Tomography (micro-CT) as a surgical margin guidance tool during BCS. METHODS: A cohort of 32 BCS specimens was prospectively imaged with a pre-clinical micro-CT system upon arrival in the surgical pathology laboratory. Reconstructed micro-CT scans were evaluated retrospectively by an experienced breast radiologist, who provided binary determinations whether lesions extended to the specimen margin. These readings were then compared to the final pathological diagnosis and to 2D specimen radiography readings. RESULTS: Of the 32 specimens imaged, 28 had malignant and four had benign pathological diagnoses. Overall five (four malignant, one benign) of the 32 specimens had lesion tissue extending to the margin. For all 32 specimens, micro-CT reconstructions were calculated (\u3c 4 min. acquisition + reconstruction time) and each specimen was volumetrically analyzed by a radiologist. Of the 28 malignant specimen readings, 18 matched the final pathological diagnosis [64%, 95 CI (47%-81%)], with a negative predictive value of 89% [95 CI (74%-96%)]. Micro-CT readings revealed changes in the tumor location and margin status as compared to single-projection radiography readings. CONCLUSIONS: Micro-CT scanning of BCS specimens enabled margin status assessment over the entirety of the surgical surface in a clinically relevant time frame, provided additional spatial information over single-projection radiography, and may be a potentially useful BCS guidance tool

    Developing diagnostic assessment of breast lumpectomy tissues using radiomic and optical signatures

    Get PDF
    High positive margin rates in oncologic breast-conserving surgery are a pressing clinical problem. Volumetric X-ray scanning is emerging as a powerful ex vivo specimen imaging technique for analyzing resection margins, but X-rays lack contrast between non-malignant and malignant fibrous tissues. In this study, combined micro-CT and wide-field optical image radiomics were developed to classify malignancy of breast cancer tissues, demonstrating that X-ray/optical radiomics improve malignancy classification. Ninety-two standardized features were extracted from co-registered micro-CT and optical spatial frequency domain imaging samples extracted from 54 breast tumors exhibiting seven tissue subtypes confirmed by microscopic histological analysis. Multimodal feature sets improved classification performance versus micro-CT alone when adipose samples were included (AUC = 0.88 vs. 0.90; p-value = 3.65e−11) and excluded, focusing the classification task on exclusively non-malignant fibrous versus malignant tissues (AUC = 0.78 vs. 0.85; p-value = 9.33e−14). Extending the radiomics approach to high-dimensional optical data—termed “optomics” in this study—offers a promising optical image analysis technique for cancer detection. Radiomic feature data and classification source code are publicly available

    Optical assessment of pathology in surgically resected tissues

    Get PDF
    Multi-spectral spatially modulated light is used to guide localized spectroscopy of surgically resected tissues for cancer involvement. Modulated imaging rapidly quantifies near-infrared optical parameters with sub-millimeter resolution over the entire field for identification of residual disease in resected tissues. Suspicious lesions are further evaluated using a spectroscopy platform designed to image thick tissue samples at a spatial resolution sensitive to the diagnostic gold standard, pathology. MI employs a spatial frequency domain sampling and model-based analysis of the spatial modulation transfer function to interpret a tissue's absorption and scattering parameters at depth. The spectroscopy platform employs a scanning-beam, telecentric dark-field illumination and confocal detection to image fields up to 1cm2 with a broadband source (480:750nm). The sampling spot size (100Îźm lateral resolution) confines the volume of tissue probed to within a few transport pathlengths so that multiple-scattering effects are minimized and simple empirical models may be used to analyze spectra. Localized spectroscopy of Intralipid and hemoglobin phantoms demonstrate insensitivity of recovered scattering parameters to changes in absorption, but a non-linear dependence of scattering power on Intralipid concentration is observed due to the phase sensitivity of the measurement system. Both systems were validated independently in phantom and murine studies. Ongoing work focuses on assessing the combined utility of these systems to identify cancer involvement in vitro, particularly in the margins of resected breast tumors

    Review of Methods for Intraoperative Margin Detection for Breast Conserving Surgery

    Get PDF
    Breast conserving surgery (BCS) is an effective treatment for early-stage cancers as long as the margins of the resected tissue are free of disease according to consensus guidelines for patient management. However, 15% to 35% of patients undergo a second surgery since malignant cells are found close to or at the margins of the original resection specimen. This review highlights imaging approaches being investigated to reduce the rate of positive margins, and they are reviewed with the assumption that a new system would need high sensitivity near 95% and specificity near 85%. The problem appears to be twofold. The first is for complete, fast surface scanning for cellular, structural, and/or molecular features of cancer, in a lumpectomy volume, which is variable in size, but can be large, irregular, and amorphous. A second is for full, volumetric imaging of the specimen at high spatial resolution, to better guide internal radiologic decision-making about the spiculations and duct tracks, which may inform that surfaces are involved. These two demands are not easily solved by a single tool. Optical methods that scan large surfaces quickly are needed with cellular/molecular sensitivity to solve the first problem, but volumetric imaging with high spatial resolution for soft tissues is largely outside of the optical realm and requires x-ray, micro-CT, or magnetic resonance imaging if they can be achieved efficiently. In summary, it appears that a combination of systems into hybrid platforms may be the optimal solution for these two very different problems. This concept must be cost-effective, image specimens within minutes and be coupled to decision-making tools that help a surgeon without adding to the procedure. The potential for optical systems to be involved in this problem is emerging and clinical trials are underway in several of these technologies to see if they could reduce positive margin rates in BCS

    Structured Light Scatteroscopy

    Get PDF
    A new imaging approach, structured light scatteroscopy (SLS), is demonstrated, which offers rapid wide-field imaging of microscopic morphological variations in bulk tissue surfaces. Elastic scattering of light offers exquisite sensitivity to ultrastructural changes at multiple size scales ranging from nanometers to millimeters, but in bulk tissues the confounding effects of molecular absorption and strong multiple scattering of light often lead to a dramatic reduction in scatter contrast and specificity. It is demonstrated that the SLS using structured high spatial frequency illumination and detection to probe the tissue achieves direct, absorption-independent, high-resolution maps of the scattering response. The scattering response is observed to be dependent on both the wavelength and spatial frequency of choice, indicating a potential for multiscale probing of ultrastructural changes in superficial tissue layers. This methodology can be easily applied in most wide-field imaging systems
    • …
    corecore