28 research outputs found

    Nucleotides bind to the C-terminus of ClC-5

    No full text
    Mutations in ClC-5 (chloride channel 5), a member of the ClC family of chloride ion channels and antiporters, have been linked to Dent's disease, a renal disease associated with proteinuria. Several of the disease-causing mutations are premature stop mutations which lead to truncation of the C-terminus, pointing to the functional significance of this region. The C-terminus of ClC-5, like that of other eukaryotic ClC proteins, is cytoplasmic and contains a pair of CBS (cystathionine β-synthase) domains connected by an intervening sequence. The presence of CBS domains implies a regulatory role for nucleotide interaction based on studies of other unrelated proteins bearing these domains [Ignoul and Eggermont (2005) Am. J. Physiol. Cell Physiol. 289, C1369–C1378; Scott, Hawley, Green, Anis, Stewart, Scullion, Norman and Hardie (2004) J. Clin. Invest. 113, 274–284]. However, to date, there has been no direct biochemical or biophysical evidence to support nucleotide interaction with ClC-5. In the present study, we have expressed and purified milligram quantities of the isolated C-terminus of ClC-5 (CIC-5 Ct). CD studies show that the protein is compact, with predominantly α-helical structure. We determined, using radiolabelled ATP, that this nucleotide binds the folded protein with low affinity, in the millimolar range, and that this interaction can be competed with 1 μM AMP. CD studies show that binding of these nucleotides causes no significant change in secondary structure, consistent with a model wherein these nucleotides bind to a preformed site. However, both nucleotides induce an increase in thermal stability of ClC-5 Ct, supporting the suggestion that both nucleotides interact with and modify the biophysical properties of this protein

    Nucleotide recognition by the cytoplasmic domain of the human chloride transporter ClC-5

    Full text link
    The ubiquitous CBS domains, which are found as part of cytoplasmic domains in the ClC family of chloride channels and transporters, have previously been identified as building blocks for regulatory nucleotide-binding sites. Here we report the structures of the cytoplasmic domain of the human transporter ClC-5 in complex with ATP and ADP. The nucleotides bind to a specific site in the protein. As determined by equilibrium dialysis, the affinities for ATP, ADP and AMP are in the high micromolar range. Point mutations that interfere with nucleotide binding change the transport behavior of a ClC-5 mutant expressed in Xenopus laevis oocytes. Our results establish the structural and energetic basis for the interaction of ClC-5 with nucleotides and provide a framework for future investigations
    corecore