61 research outputs found

    Predictive powers of chiral perturbation theory in Compton scattering off protons

    Full text link
    We study low-energy nucleon Compton scattering in the framework of baryon chiral perturbation theory (Bχ\chiPT) with pion, nucleon, and Δ\Delta(1232) degrees of freedom, up to and including the next-to-next-to-leading order (NNLO). We include the effects of order p2p^2, p3p^3 and p4/Δp^4/\varDelta, with Δ300\varDelta\approx 300 MeV the Δ\Delta-resonance excitation energy. These are all "predictive" powers in the sense that no unknown low-energy constants enter until at least one order higher (i.e, p4p^4). Estimating the theoretical uncertainty on the basis of natural size for p4p^4 effects, we find that uncertainty of such a NNLO result is comparable to the uncertainty of the present experimental data for low-energy Compton scattering. We find an excellent agreement with the experimental cross section data up to at least the pion-production threshold. Nevertheless, for the proton's magnetic polarizability we obtain a value of (4.0±0.7)×104(4.0\pm 0.7)\times 10^{-4} fm3^3, in significant disagreement with the current PDG value. Unlike the previous χ\chiPT studies of Compton scattering, we perform the calculations in a manifestly Lorentz-covariant fashion, refraining from the heavy-baryon (HB) expansion. The difference between the lowest order HBχ\chiPT and Bχ\chiPT results for polarizabilities is found to be appreciable. We discuss the chiral behavior of proton polarizabilities in both HBχ\chiPT and Bχ\chiPT with the hope to confront it with lattice QCD calculations in a near future. In studying some of the polarized observables, we identify the regime where their naive low-energy expansion begins to break down, thus addressing the forthcoming precision measurements at the HIGS facility.Comment: 24 pages, 9 figures, RevTeX4, revised version published in EPJ

    Spin-dependent cross sections from the three-body photodisintegration of He 3 at incident energies of 12.8 and 14.7 MeV

    Get PDF
    The first measurement of the three-body photodisintegration of polarized 3He using a circularly polarized photon beam has been performed at incident energies of 12.8 and 14.7 MeV. This measurement was carried out at the high-intensity γ-ray source located at Triangle Universities Nuclear Laboratory. A high-pressure 3He target, polarized via spin exchange optical pumping with alkali metals, was used in the experiment. The spin-dependent double- and single-differential cross sections from 3He(γ,n)pp for laboratory angles varying from 30° to 165° are presented and compared with state-of-the-art three-body calculations. The data reveal the importance of including the Coulomb interaction between protons in the three-body calculations

    BOUT++: a framework for parallel plasma fluid simulations

    Full text link
    A new modular code called BOUT++ is presented, which simulates 3D fluid equations in curvilinear coordinates. Although aimed at simulating Edge Localised Modes (ELMs) in tokamak X-point geometry, the code is able to simulate a wide range of fluid models (magnetised and unmagnetised) involving an arbitrary number of scalar and vector fields, in a wide range of geometries. Time evolution is fully implicit, and 3rd-order WENO schemes are implemented. Benchmarks are presented for linear and non-linear problems (the Orszag-Tang vortex) showing good agreement. Performance of the code is tested by scaling with problem size and processor number, showing efficient scaling to thousands of processors. Linear initial-value simulations of ELMs using reduced ideal MHD are presented, and the results compared to the ELITE linear MHD eigenvalue code. The resulting mode-structures and growth-rate are found to be in good agreement (BOUT++ = 0.245, ELITE = 0.239). To our knowledge, this is the first time dissipationless, initial-value simulations of ELMs have been successfully demonstrated.Comment: Submitted to Computer Physics Communications. Revised to reduce page count. 18 pages, 16 figure

    Time Projection Chamber (TPC) detectors for nuclear astrophysics studies with gamma beams

    Get PDF
    Gamma-Beams at the HIS facility in the USA and anticipated at the ELI-NP facility, now constructed in Romania, present unique new opportunities to advance research in nuclear astrophysics; not the least of which is resolving open questions in oxygen formation during stellar helium burning via a precise measurement of the 12C() reaction. Time projection chamber (TPC) detectors operating with low pressure gas (as an active target) are ideally suited for such studies. We review the progress of the current research program and plans for the future at the HIS facility with the optical readout TPC (O-TPC) and the development of an electronic readout TPC for the ELI-NP facility (ELITPC)

    Updated Nucleosynthesis Constraints on Unstable Relic Particles

    Get PDF
    We revisit the upper limits on the abundance of unstable massive relic particles provided by the success of Big-Bang Nucleosynthesis calculations. We use the cosmic microwave background data to constrain the baryon-to-photon ratio, and incorporate an extensively updated compilation of cross sections into a new calculation of the network of reactions induced by electromagnetic showers that create and destroy the light elements deuterium, he3, he4, li6 and li7. We derive analytic approximations that complement and check the full numerical calculations. Considerations of the abundances of he4 and li6 exclude exceptional regions of parameter space that would otherwise have been permitted by deuterium alone. We illustrate our results by applying them to massive gravitinos. If they weigh ~100 GeV, their primordial abundance should have been below about 10^{-13} of the total entropy. This would imply an upper limit on the reheating temperature of a few times 10^7 GeV, which could be a potential difficulty for some models of inflation. We discuss possible ways of evading this problem.Comment: 40 pages LaTeX, 18 eps figure

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF
    corecore