20 research outputs found

    Analysis of Carbohydrate Storage Granules in the Diazotrophic Cyanobacterium Cyanothece sp. PCC 7822.

    Get PDF
    The unicellular diazotrophic cyanobacteria of the genus Cyanothece demonstrate oscillations in nitrogenase activity and H2 production when grown under 12 h light–12 h dark cycles. We established that Cyanothece sp. PCC 7822 allows for the construction of knock-out mutants and our objective was to improve the growth characteristics of this strain and to identify the nature of the intracellular storage granules. We report the physiological and morphological effects of reduction in nitrate and phosphate concentrations in BG-11 media on this strain. We developed a series of BG-11-derived growth media and monitored batch culture growth, nitrogenase activity and nitrogenase-mediated hydrogen production, culture synchronicity, and intracellular storage content. Reduction in NaNO3 and K2HPO4 concentrations from 17.6 and 0.23 to 4.41 and 0.06 mM, respectively, improved growth characteristics such as cell size and uniformity, and enhanced the rate of cell division. Cells grown in this low NP BG-11 were less complex, a parameter that related to the composition of the intracellular storage granules. Cells grown in low NP BG-11 had less polyphosphate, fewer polyhydroxybutyrate granules and many smaller granules became evident. Biochemical analysis and transmission electron microscopy using the histocytochemical PATO technique demonstrated that these small granules contained glycogen. The glycogen levels and the number of granules per cell correlated nicely with a 2.3 to 3.3-fold change from the minimum at L0 to the maximum at D0. The differences in granule morphology and enzymes between Cyanothece ATCC 51142 and CyanothecePCC 7822 provide insights into the formation of large starch-like granules in some cyanobacteria

    An integrated approach to develop unicellular cyanobacteria for biofuel production

    No full text
    The goal of engineering cyanobacteria to produce of high-value compounds, like biofuels, comes with many challenges. Physiological characteristics such as growth rate, culture heterogeneity, and nutrient storage can impact the facility of using specific organisms for targeted chemical production. In addition, an increasing body of evidence suggests that post-transcriptional regulatory mechanisms are prevalent in cyanobacteria. The unicellular genus Cyanothece consists of diazotrophic cyanobacteria that can fix atmospheric N2 in addition to CO2. Cyanothece strain PCC 7822 is the only member of this genus that is amenable to genetic modification. This strain stores a significant amount of nutrients in intracellular granules, extrudes exopolysacchrides making macromolecule isolation difficult and cells to aggregate. Also, little is known about the expression dynamics of metabolic pathways that could be used for biofuel production. In order to further develop this strain for the industrial purposes, an integrated approach was applied consisting of three main areas; physiology – how cells grow and store carbohydrates under different conditions; gene expression – utilizing transcriptomics and proteomics to understand how different metabolic reactions occur within the cell; and genetics – monitoring the effects of different genetic modifications in order to generate novel metabolic capabilities. Nitrate and phosphate levels in BG-11 growth media were reduced and flow cytometry and transmission electron microscopy were used to determine the effects on various physiological properties. Reducing these nutrient concentrations led to a decrease in intracellular storage, improved the growth rate, and increased culture homogeneity. Global metabolic dynamics were quantitated during standard growth conditions at four time points across a 24 hour light-dark cycle through a parallel transcriptomics and proteomics investigation. This is the first time such a study has been described for Cyanothece 7822. In addition, glycogen biosynthesis mutants were generated to study the enzymatic basis for variation in carbohydrate storage among cyanobacterial species and to test whether or not altering the structure of stored sugar granules can influence the production of downstream compound

    A Hard Day’s Night: Cyanobacteria in Diel Cycles

    No full text

    Predicting the metabolic capabilities of Synechococcus elongatus PCC 7942 adapted to different light regimes

    No full text
    There is great interest in engineering photoautotrophic metabolism to generate bioproducts of societal importance. Despite the success in employing genome-scale modeling coupled with flux balance analysis to engineer heterotrophic metabolism, the lack of proper constraints necessary to generate biologically realistic predictions has hindered broad application of this methodology to phototrophic metabolism. Here we describe a methodology for constraining genome-scale models of photoautotrophy in the cyanobacteria Synechococcus elongatus PCC 7942. Experimental photophysiology parameters coupled to genome-scale flux balance analysis resulted in accurate predictions of growth rates and metabolic reaction fluxes at low and high light conditions. Additionally, by constraining photon uptake fluxes, we characterized the metabolic cost of excess excitation energy. The predicted energy fluxes were consistent with known light-adapted phenotypes in cyanobacteria. Finally, we leveraged the modeling framework to characterize existing photoautotrophic and photomixtotrophic engineering strategies for 2,3-butanediol production in S. elongatus. This methodology, applicable to genome-scale modeling of all phototrophic microorganisms, can facilitate the use of flux balance analysis in the engineering of light-driven metabolism
    corecore