1,003 research outputs found

    Structural and Functional Characterization of Malate Synthase G from Opportunistic Pathogen Pseudomonas aeruginosa

    Get PDF
    Pseudomonas aeruginosa is an opportunistic human pathogen recognized as a critical threat by the World Health Organization due to the dwindling number of effective therapies available to treat infections. Over the last decade, it has become apparent that the glyoxylate shunt plays a vital role in sustaining P. aeruginosa during infection scenarios. The glyoxylate shunt comprises two enzymes: isocitrate lyase and malate synthase isoform G. Inactivation of these enzymes has been reported to abolish the ability of P. aeruginosa to establish infection in a mammalian model system, yet we still lack the structural information to support drug design efforts. In this work, we describe the first X-ray crystal structure of P. aeruginosa malate synthase G in the apo form at 1.62 Å resolution. The enzyme is a monomer composed of four domains and is highly conserved with homologs found in other clinically-relevant microorganisms. It is also dependent on Mg2+ for catalysis. Metal ion binding led to a change in the intrinsic fluorescence of the protein, allowing us to quantitate its affinity for Mg2+. We also identified putative drug binding sites in malate synthase G using computational analysis and, because of the high resolution of the experimental data, were further able to characterize its hydration properties. Our data reveal two promising binding pockets in malate synthase G that may be exploited for drug design.This work was supported by the European Commission’s Horizon 2020 Grant 642620 to M.W. and A.P. and BBSRC Grant BB/M019411/1 to M.W

    Discovery of an inhibitor of the production of the Pseudomonas aeruginosa virulence factor pyocyanin in wild-type cells.

    Get PDF
    Pyocyanin is a small molecule produced by Pseudomonas aeruginosa that plays a crucial role in the pathogenesis of infections by this notorious opportunistic pathogen. The inhibition of pyocyanin production has been identified as an attractive antivirulence strategy for the treatment of P. aeruginosa infections. Herein, we report the discovery of an inhibitor of pyocyanin production in cultures of wild-type P. aeruginosa which is based around a 4-alkylquinolin-2(1H)-one scaffold. To the best of our knowledge, this is the first reported example of pyocyanin inhibition by a compound based around this molecular framework. The compound may therefore be representative of a new structural sub-class of pyocyanin inhibitors, which could potentially be exploited in in a therapeutic context for the development of critically needed new antipseudomonal agents. In this context, the use of wild-type cells in this study is notable, since the data obtained are of direct relevance to native situations. The compound could also be of value in better elucidating the role of pyocyanin in P. aeruginosa infections. Evidence suggests that the active compound reduces the level of pyocyanin production by inhibiting the cell-cell signalling mechanism known as quorum sensing. This could have interesting implications; quorum sensing regulates a range of additional elements associated with the pathogenicity of P. aeruginosa and there is a wide range of other potential applications where the inhibition of quorum sensing is desirable.The research leading to these results has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement no [279337/DOS]. In addition, the group research was supported by grants from the Engineering and Physical Sciences Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council and Welcome Trust. Y.S.T. was supported by an A*STAR Graduate Scholarship

    Can science writing collectives overcome barriers to more democratic communication and collaboration? Lessons from environmental communication praxis in southern Appalachia

    Get PDF
    Despite compelling reasons to involve nonscientists in the production of ecological knowledge, cultural and institutional factors often dis-incentivize engagement between scientists and nonscientists. This paper details our efforts to develop a biweekly newspaper column to increase communication between ecological scientists, social scientists, and the communities within which they work. Addressing community-generated topics and written by a collective of social and natural scientists, the column is meant to foster public dialog about socio-environmental issues and to lay the groundwork for the coproduction of environmental knowledge. Our collective approach to writing addresses some major barriers to public engagement by scientists, but the need to insert ourselves as intermediaries limits these gains. Overall, our efforts at environmental communication praxis have not generated significant public debate, but they have supported future coproduction by making scientists a more visible presence in the community and providing easy pathways for them to begin engaging the public. Finally, this research highlights an underappreciated barrier to public engagement: scientists are not merely disconnected from the public, but also connected in ways that may be functional for their research. Many field scientists, for example, seek out neutral and narrowly defined connections that permit research access but are largely incompatible with efforts to address controversial issues of environmental governance

    Leaf-applied sodium chloride promotes cadmium accumulation in durum wheat grain

    Get PDF
    Cadmium (Cd) accumulation in durum wheat grain is a growing concern. Among the factors affecting Cd accumulation in plants, soil chloride (Cl) concentration plays a critical role. The effect of leaf NaCl application on grain Cd was studied in greenhouse-grown durum wheat (Triticum turgidum L. durum, cv. Balcali-2000) by immersing (10 s) intact flag leaves into Cd and/or NaCl-containing solutions for 14 times during heading and dough stages. Immersing flag leaves in solutions containing increasing amount of Cd resulted in substantial increases in grain Cd concentration. Adding NaCl alone or in combination with the Cd-containing immersion solution promoted accumulation of Cd in the grains, by up to 41%. In contrast, Zn concentrations of grains were not affected or even decreased by the NaCl treatments. This is likely due to the effect of Cl complexing Cd and reducing positive charge on the metal ion, an effect that is much smaller for Zn. Charge reduction or removal (CdCl2 0 species) would increase the diffusivity/lipophilicity of Cd and enhance its capability to penetrate the leaf epidermis and across membranes. Of even more significance to human health was the ability of Cl alone to penetrate leaf tissue and mobilize and enhance shoot Cd transfer to grains, yet reducing or not affecting Zn transfer

    Molecular biology of breast cancer metastasis: Genetic regulation of human breast carcinoma metastasis

    Get PDF
    The present is an overview of recent data that describes the genetic underpinnings of the suppression of cancer metastasis. Despite the explosion of new information about the genetics of cancer, only six human genes have thus far been shown to suppress metastasis functionally. Not all have been shown to be functional in breast carcinoma. Several additional genes inhibit various steps of the metastatic cascade, but do not necessarily block metastasis when tested using in vivo assays. The implications of this are discussed. Two recently discovered metastasis suppressor genes block proliferation of tumor cells at a secondary site, offering a new target for therapeutic intervention
    • …
    corecore