170 research outputs found
Comparison of Ice Cloud Particle Sizes Retrieved from Satellite Data Derived from In Situ Measurements
Cloud microphysical parameterizations have attracted a great deal of attention in recent years due to their effect on cloud radiative properties and cloud-related hydrological processes in large-scale models. The parameterization of cirrus particle size has been demonstrated as an indispensable component in the climate feedback analysis. Therefore, global-scale, long-term observations of cirrus particle sizes are required both as a basis of and as a validation of parameterizations for climate models. While there is a global scale, long-term survey of water cloud droplet sizes (Han et al.), there is no comparable study for cirrus ice crystals. This study is an effort to supply such a data set
A Near-Global Survey of Cirrus Particle Size Using ISCCP
Cirrus is the most frequently occurring and widely distributed cloud type. The average annual frequency of occurrence for cirrus is 34% and its global coverage is about 20-30% (Warren et al. 1985). It strongly influences weather and climate processes through its effects on the radiation budget of the earth and the atmosphere (Liou 1986). Microphysics of cirrus is a critical component in understanding cloud-climate radiative interactions. For example, ice water content feedback is positive from a 1-D model study. But the feedback is substantially reduced upon the inclusion of small ice crystals (Sinha and Shine 1994). Due to the complexity caused by the non-spherical shape of ice crystals in cirrus, retrievals of cirrus properties are difficult. In recent years, advances have been made both in models and in case studies (e.g., Takano and Liou 1989, Young et al. 1994), but no global scale survey has been conducted. Similar to our previous near-global survey of droplet sizes of liquid water clouds (Han et al. 1994), a survey of cirrus ice crystal sizes is conducted over both continental and oceanic areas. We describe a method for retrieving cirrus particle size information on a near-global scale 50 deg S to 50 deg N using currently available satellite data from ISCCP. To retrieve cirrus particle size, we use a radiative transfer model that includes all major absorbing gases and cloud scattering/absorption to compute synthetic radiances as a function of satellite viewing geometry. Ice crystal shapes are assumed to be hexagonal columns and plates. The model results have been validated against clear sky observations and are consistent with the observed radiance range under cloudy conditions
Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP
Aerosols affect climate through direct and indirect effects. The direct effect of aerosols (e.g., sulfates) includes reflection of sunlight back toward space and for some aerosols (e.g., smoke particles), absorption in the atmosphere; both effects cool the Earth's surface. The indirect effect of aerosols refers to the modification of cloud microphysical properties, thereby affecting the radiation balance. Higher concentrations of Cloud Condensation Nuclei (CCN) generally produce higher concentrations of cloud droplets, which are also usually assumed to lead to decreased cloud droplet sizes. The result is an increase in cloud albedo, producing a net radiative cooling, opposite to the warming caused by greenhouse gases (Charlson et al. 1992). The change in clouds that is directly induced by an increase of aerosol concentration is an increase of cloud droplet number density, N; but is is usually assumed that cloud droplet size decreases as if the water mass density Liquid Water Content (LWC) were constant. There is actually no reason why this should be the case. Shifting the cloud droplet size distribution to more numerous smaller droplets can change the relative rates of condensational and coalescence growth, leading to different LWC (e.g., Rossow 1978). Moreover, the resulting change in cloud albedo is usually ascribed to more efficient scattering by smaller droplets, when in fact it is the increase in droplet number density (assuming constant LWC) that produces the most important change in cloud albedo: e.g., holding N constant and decreasing the droplet size would actually decrease the scattering cross-section and, thus, the albedo much more than it is increased by the increased scattering efficiency
Global Survey of the Relationship Between Cloud Droplet Size and Albedo Using ISCCP
The possible indirect aerosol effect on climate is examined. First, the spatial relationship is checked between cloud droplet radii and cloud albedo in different areas where aerosol concentration are known to differ significantly. Second, the temporal relationship between r(sub e) and cloud albedo is explored for each 2.5 deg x 2.5 deg grid box to reveal in which regions of the globe the variations of cloud albedo are correlated with changes in r(sub e) consistent with the indirect aerosol effect hypothesis
Spectral Optical Properties of the Polluted Atmosphere of Mexico City (Spring-Summer 1992)
A joint Mexican, Russian, and American research effort has been initiated to develop new methods to remotely sense atmospheric parameters using ground-based, aircraft, and satellite observations. As a first step in this program, ground-based spectrophotometric measurements of the direct solar radiation have been obtained for the extremely polluted Mexico City atmosphere for the period of April-June 1992. These observations were made at more than 1300 channels in the spectral range of 0.35-0.95 microns. In the UltraViolet (UV) portions of the spectrum (e.g., 0.35 microns), aerosol optical thicknesses were found to range between 0.6 and 1.2; in the visible portion of the spectrum (e. g., 0.5 microns) they ranged from 0.5 to 0.8; and in the Near-Infrared (NIR) spectra (e.g., 0.85 micron), values of 0.3 - 0.5 were found. Applying a Spectral Optical Depth (SOD) model of tau(lambda) = C + A(lambda(sup -varies as), values of 1.55 less than varies as less than 1.85 were obtained for polluted, cloudless days, with values of 1.25 less than varies as less than 1.60 on days with haze. The aerosol particles in the polluted Mexico City atmosphere were found to be strongly absorbing, with a single-scattering albedo of 0.7 - 0.9 in the UV, 0.6 - 0.8 in the visible portion of the spectrum, and 0.4 - 0.7 in the NIR. These values are possibly consistent with a high soot concentration, contributed both by vehicular traffic and heavy industry. Analysis of the measured aerosol SOD using the optical parameters of an urban aerosol model pemiits the concentration of aerosol particles to be estimated in the vertical column; a maximum value of 3 x 10(exp 9) 1/sq cm was found. This concentration of aerosol particles exceeds that found in most other regions of the globe by at least an order of magnitude. Near the ground the aerosol size distributions measured using an optical particle counter were found to be strongly multimodal
Quantitative Metabolomics Reveals an Epigenetic Blueprint for Iron Acquisition in Uropathogenic Escherichia coli
Bacterial pathogens are frequently distinguished by the presence of acquired genes associated with iron acquisition. The presence of specific siderophore receptor genes, however, does not reliably predict activity of the complex protein assemblies involved in synthesis and transport of these secondary metabolites. Here, we have developed a novel quantitative metabolomic approach based on stable isotope dilution to compare the complement of siderophores produced by Escherichia coli strains associated with intestinal colonization or urinary tract disease. Because uropathogenic E. coli are believed to reside in the gut microbiome prior to infection, we compared siderophore production between urinary and rectal isolates within individual patients with recurrent UTI. While all strains produced enterobactin, strong preferential expression of the siderophores yersiniabactin and salmochelin was observed among urinary strains. Conventional PCR genotyping of siderophore receptors was often insensitive to these differences. A linearized enterobactin siderophore was also identified as a product of strains with an active salmochelin gene cluster. These findings argue that qualitative and quantitative epi-genetic optimization occurs in the E. coli secondary metabolome among human uropathogens. Because the virulence-associated biosynthetic pathways are distinct from those associated with rectal colonization, these results suggest strategies for virulence-targeted therapies
Effectiveness of an evidence-based chiropractic continuing education workshop on participant knowledge of evidence-based health care
BACKGROUND: Chiropractors must continue to learn, develop themselves professionally throughout their careers, and become self-directed and lifelong learners. Using an evidence-based approach increases the probability of optimal patient outcomes. But most chiropractors lack knowledge and interest in evidence-based approaches. The purpose of this study was to develop and measure the effectiveness of evidence-based training for chiropractic practitioners in a continuing education setting. METHODS: We developed and evaluated a continuing education workshop on evidence-based principles and methods for chiropractic practitioners. Forty-seven chiropractors participated in the training and testing. The course consisted of 12.5 hours of training in which practitioners learned to develop focused questions, search electronic data bases, critically review articles and apply information from the literature to specific clinical questions. Following the workshop, we assessed the program performance through the use of knowledge testing and anonymous presentation quality surveys. RESULTS: Eighty-five percent of the participants completed all of the test, survey and data collection items. Pretest knowledge scores (15-item test) were low (47%). Post intervention scores (15-item test) improved with an effect size of 2.0. A 59-item knowledge posttest yielded very good results (mean score 88%). The quality of presentation was rated very good, and most participants (90%) would "definitely recommend" or "recommend" the workshop to a colleague. CONCLUSION: The results of the study suggest that the continuing education course was effective in enhancing knowledge in the evidence-based approach and that the presentation was well accepted
The pathophysiology of restricted repetitive behavior
Restricted, repetitive behaviors (RRBs) are heterogeneous ranging from stereotypic body movements to rituals to restricted interests. RRBs are most strongly associated with autism but occur in a number of other clinical disorders as well as in typical development. There does not seem to be a category of RRB that is unique or specific to autism and RRB does not seem to be robustly correlated with specific cognitive, sensory or motor abnormalities in autism. Despite its clinical significance, little is known about the pathophysiology of RRB. Both clinical and animal models studies link repetitive behaviors to genetic mutations and a number of specific genetic syndromes have RRBs as part of the clinical phenotype. Genetic risk factors may interact with experiential factors resulting in the extremes in repetitive behavior phenotypic expression that characterize autism. Few studies of individuals with autism have correlated MRI findings and RRBs and no attempt has been made to associate RRB and post-mortem tissue findings. Available clinical and animal models data indicate functional and structural alterations in cortical-basal ganglia circuitry in the expression of RRB, however. Our own studies point to reduced activity of the indirect basal ganglia pathway being associated with high levels of repetitive behavior in an animal model. These findings, if generalizable, suggest specific therapeutic targets. These, and perhaps other, perturbations to cortical basal ganglia circuitry are mediated by specific molecular mechanisms (e.g., altered gene expression) that result in long-term, experience-dependent neuroadaptations that initiate and maintain repetitive behavior. A great deal more research is needed to uncover such mechanisms. Work in areas such as substance abuse, OCD, Tourette syndrome, Parkinson’s disease, and dementias promise to provide findings critical for identifying neurobiological mechanisms relevant to RRB in autism. Moreover, basic research in areas such as birdsong, habit formation, and procedural learning may provide additional, much needed clues. Understanding the pathophysioloy of repetitive behavior will be critical to identifying novel therapeutic targets and strategies for individuals with autism
The genetic architecture of type 2 diabetes
The genetic architecture of common traits, including the number, frequency, and effect sizes of inherited variants that contribute to individual risk, has been long debated. Genome-wide association studies have identified scores of common variants associated with type 2 diabetes, but in aggregate, these explain only a fraction of heritability. To test the hypothesis that lower-frequency variants explain much of the remainder, the GoT2D and T2D-GENES consortia performed whole genome sequencing in 2,657 Europeans with and without diabetes, and exome sequencing in a total of 12,940 subjects from five ancestral groups. To increase statistical power, we expanded sample size via genotyping and imputation in a further 111,548 subjects. Variants associated with type 2 diabetes after sequencing were overwhelmingly common and most fell within regions previously identified by genome-wide association studies. Comprehensive enumeration of sequence variation is necessary to identify functional alleles that provide important clues to disease pathophysiology, but large-scale sequencing does not support a major role for lower-frequency variants in predisposition to type 2 diabetes
- …