440 research outputs found

    Electric Control of the Exciton Fine Structure in Non-Parabolic Quantum Dots

    Full text link
    We show that the non-parabolic confinement potential is responsible for the non-monotonic behavior and sign change of the exciton fine-structure splitting (FSS) in optically active self-assembled quantum dots. This insight is important for the theoretical understanding and practical control by electric fields of the quantum state of the emitted light from a biexciton cascade recombination process. We find that a hard-wall (box) confinement potential leads to a FSS that is in better agreement with experimentally measured FSS than a harmonic potential. We then show that a finite applied electric field can be used to remove the FSS entirely, thus allowing for the creation of maximally entangled photons, being vital to the growing field of quantum communication and quantum key distribution.Comment: 5 pages, 4 figure

    Uniform shear flow in dissipative gases. Computer simulations of inelastic hard spheres and (frictional) elastic hard spheres

    Get PDF
    In the preceding paper (cond-mat/0405252), we have conjectured that the main transport properties of a dilute gas of inelastic hard spheres (IHS) can be satisfactorily captured by an equivalent gas of elastic hard spheres (EHS), provided that the latter are under the action of an effective drag force and their collision rate is reduced by a factor (1+α)/2(1+\alpha)/2 (where α\alpha is the constant coefficient of normal restitution). In this paper we test the above expectation in a paradigmatic nonequilibrium state, namely the simple or uniform shear flow, by performing Monte Carlo computer simulations of the Boltzmann equation for both classes of dissipative gases with a dissipation range 0.5≀α≀0.950.5\leq \alpha\leq 0.95 and two values of the imposed shear rate aa. The distortion of the steady-state velocity distribution from the local equilibrium state is measured by the shear stress, the normal stress differences, the cooling rate, the fourth and sixth cumulants, and the shape of the distribution itself. In particular, the simulation results seem to be consistent with an exponential overpopulation of the high-velocity tail. The EHS results are in general hardly distinguishable from the IHS ones if α≳0.7\alpha\gtrsim 0.7, so that the distinct signature of the IHS gas (higher anisotropy and overpopulation) only manifests itself at relatively high dissipationsComment: 23 pages; 18 figures; Figs. 2 and 9 include new simulations; two new figures added; few minor changes; accepted for publication in PR

    Migraine and gastrointestinal disorders in middle and old age: A UK Biobank study

    Get PDF
    Introduction: Migraine is a prevalent condition causing a substantial level of disability worldwide. Despite this, the pathophysiological mechanisms are not fully understood. Migraine often co-occurs with gastrointestinal disorders, but the direction of a potential causal link is unclear. The aim of this project was to investigate the associations between migraine and several gastrointestinal disorders in the same cohort in order to determine the relative strengths of these associations. Methods: This cross-sectional study examined whether migraine is associated with irritable bowel syndrome (IBS), peptic ulcers, Helicobacter pylori (HP) infections, celiac disease, Crohn's disease and ulcerative colitis. Baseline data covering 489,753 UK Biobank participants (migraine group: n = 14,180) were analyzed using Pearson's chi-square tests and adjusted binary logistic regression models. Results: Migraine was significantly associated with IBS (odds ratio [OR] 2.24, 95% confidence interval [CI] 2.08–2.40, p <.001) and peptic ulcers (OR 1.55, 95% CI 1.35–1.77, p <.001). Migraine was not associated with HP infection (OR 1.34, 95% CI 1.04–1.73, p =.024), celiac disease (OR 1.29, 95% CI 1.04–1.60, p =.023), Crohn's disease (OR 1.08, 95% CI 0.80–1.45, p =.617) or ulcerative colitis (OR 1.00, 95% CI 0.79–1.27, p =.979) after adjusting for multiple testing. Conclusions: Migraine was associated with IBS and peptic ulcers in this large population-based cohort. The associations with HP infection, celiac disease, Crohn's disease, and ulcerative colitis did not reach significance, suggesting a weaker link between migraine and autoimmune gastrointestinal conditions or HP infection

    Causal Relativistic Fluid Dynamics

    Full text link
    We derive causal relativistic fluid dynamical equations from the relaxation model of kinetic theory as in a procedure previously applied in the case of non-relativistic rarefied gases. By treating space and time on an equal footing and avoiding the iterative steps of the conventional Chapman-Enskog --- CE---method, we are able to derive causal equations in the first order of the expansion in terms of the mean flight time of the particles. This is in contrast to what is found using the CE approach. We illustrate the general results with the example of a gas of identical ultrarelativistic particles such as photons under the assumptions of homogeneity and isotropy. When we couple the fluid dynamical equations to Einstein's equation we find, in addition to the geometry-driven expanding solution of the FRW model, a second, matter-driven nonequilibrium solution to the equations. In only the second solution, entropy is produced at a significant rate.Comment: 23 pages (CQG, in press

    Driven dynamics and rotary echo of a qubit tunably coupled to a harmonic oscillator

    Get PDF
    We have investigated the driven dynamics of a superconducting flux qubit that is tunably coupled to a microwave resonator. We find that the qubit experiences an oscillating field mediated by off-resonant driving of the resonator, leading to strong modifications of the qubit Rabi frequency. This opens an additional noise channel, and we find that low-frequency noise in the coupling parameter causes a reduction of the coherence time during driven evolution. The noise can be mitigated with the rotary-echo pulse sequence, which, for driven systems, is analogous to the Hahn-echo sequence

    A Continuum Description of Rarefied Gas Dynamics (I)--- Derivation From Kinetic Theory

    Full text link
    We describe an asymptotic procedure for deriving continuum equations from the kinetic theory of a simple gas. As in the works of Hilbert, of Chapman and of Enskog, we expand in the mean flight time of the constituent particles of the gas, but we do not adopt the Chapman-Enskog device of simplifying the formulae at each order by using results from previous orders. In this way, we are able to derive a new set of fluid dynamical equations from kinetic theory, as we illustrate here for the relaxation model for monatomic gases. We obtain a stress tensor that contains a dynamical pressure term (or bulk viscosity) that is process-dependent and our heat current depends on the gradients of both temperature and density. On account of these features, the equations apply to a greater range of Knudsen number (the ratio of mean free path to macroscopic scale) than do the Navier-Stokes equations, as we see in the accompanying paper. In the limit of vanishing Knudsen number, our equations reduce to the usual Navier-Stokes equations with no bulk viscosity.Comment: 16 page

    The Politics of Exhaustion and the Externalization of British Border Control. An Articulation of a Strategy Designed to Deter, Control and Exclude

    Get PDF
    In response to contemporary forms of human mobility, there has been a continued hardening of borders seeking to deter, control and exclude certain groups of people from entering nation states in Europe, North America and Australasia. Within this context, a disconcerting evolution of new and increasingly sophisticated forms of border control measures have emerged, which often play out within bilateral arrangements of “externalised” or “offshore” border controls. Drawing on extensive first‐hand field research among displaced people in Calais, Paris and Brussels in 2016–2019, this paper argues that the externalization of the British border to France is contingent upon a harmful strategy, which can be understood as the “politics of exhaustion.” This is a raft of (micro) practices and methods strategically aimed to deter, control and exclude certain groups of people on the move who have been profiled as “undesirable,” with a detrimental (un)intended impact on human lives

    Surface Roughness and Effective Stick-Slip Motion

    Get PDF
    The effect of random surface roughness on hydrodynamics of viscous incompressible liquid is discussed. Roughness-driven contributions to hydrodynamic flows, energy dissipation, and friction force are calculated in a wide range of parameters. When the hydrodynamic decay length (the viscous wave penetration depth) is larger than the size of random surface inhomogeneities, it is possible to replace a random rough surface by effective stick-slip boundary conditions on a flat surface with two constants: the stick-slip length and the renormalization of viscosity near the boundary. The stick-slip length and the renormalization coefficient are expressed explicitly via the correlation function of random surface inhomogeneities. The effective stick-slip length is always negative signifying the effective slow-down of the hydrodynamic flows by the rough surface (stick rather than slip motion). A simple hydrodynamic model is presented as an illustration of these general hydrodynamic results. The effective boundary parameters are analyzed numerically for Gaussian, power-law and exponentially decaying correlators with various indices. The maximum on the frequency dependence of the dissipation allows one to extract the correlation radius (characteristic size) of the surface inhomogeneities directly from, for example, experiments with torsional quartz oscillators.Comment: RevTeX4, 14 pages, 3 figure

    Real-time mirror steering for improved closed loop neoclassical tearing mode suppression by electron cyclotron current drive in DIII-D

    Get PDF
    h i g h l i g h t s ‱ We developed neoclassical tearing mode (NTM) control system for DIII-D, which uses six sets of real-time steerable mirrors in order to move the electron cyclotron current drive (ECCD) deposition location in plasma. ‱ This algorithm accurately finds the NTM island location employing motional Stark effect EFIT MHD equilibrium reconstruction. ‱ Successful NTM suppression and preemption has been achieved in DIII-D using this control system to automatically switches on and off gyrotrons when NTM is detected and rapidly align the NTM island and the ECCD deposition location. a r t i c l e i n f o a b s t r a c t The development and operation of the neoclassical tearing mode (NTM) avoidance and control system for DIII-D, which uses six sets of real-time steerable mirrors in order to move the electron cyclotron current drive (ECCD) deposition location in plasma, is described. The real-time DIII-D NTM control algorithm residing in the Plasma Control System (PCS) automatically detects an NTM by analysis of the Mirnov diagnostics, employs motional Stark effect (MSE) EFIT MHD equilibrium reconstruction to locate the rational q-surface where the NTM island can be found, then calculates the appropriate mirror position for alignment of the ECCD with the island using ray tracing. The control commands from PCS are sent to the electron cyclotron system to switch on and off or modulate the gyrotrons and to the steerable mirror system to move the steerable mirrors to the requested positions. Successful NTM suppression has been achieved in DIII-D using this control system to rapidly align the NTM island and the ECCD deposition location, and to actively maintain the alignment as plasma conditions change
    • 

    corecore