29 research outputs found

    Endometriosis-associated recto-sigmoid cancer: a case report

    No full text
    Abstract Background Endometriosis is a relatively common condition in women of reproductive age. Malignant transformation of intestinal endometriosis is a very rare event. We report a case in which a patient with a history of endometriosis underwent surgery for malignant intestinal endometriosis. Case presentation A 55-year-old woman complained of rectorrhagia and intermittent abdominal pain. A neoplasm was revealed by colonoscopy, CT scan and F18-FDG PET/CT of the recto-sigmoidal colon. The patient underwent a rectal anterior resection, hysterectomy and bilateral salpingo-oophorectomy for treatment. According to the histological and immunohistochemical presentation, the diagnosis of endometriosis-associated recto-sigmoid cancer was confirmed. The patient was treated with adjuvant chemotherapy for 6 months. During the follow-up appointment 22 months later, there was clinical and radiographic evidence of recurrence in the rectum. The patient received chemotherapy again and will receive another surgery after two more cycles of chemotherapy. Conclusion We report a case of malignant intestinal endometriosis. Although there is no standard therapy for malignant intestinal endometriosis due to the rarity of this disease, surgery and adjuvant chemotherapy seemed to be rational. This case indicates that local recurrence may be a common situation after standard therapy

    Research on Application Characteristics of Zirconia-Based High-Temperature NOx Sensors

    No full text
    The zirconia solid electrolyte SOFC (solid oxide fuel cell) has the characteristics of oxygen ion conduction function, high-temperature resistance, thermoelectric coupling effect, etc. A NOx sensor based on zirconia solid electrolyte has common characteristics and problems with the SOFC in principle and application. The research objective of this paper is to solve the application problems of smart NOx sensors in diesel vehicles or gasoline vehicles. Improvements in the application performance of the NOx sensor can help the NOx emissions of gasoline vehicles or diesel vehicles better meet the requirements of emission regulations. The smart NOx sensor is a regulatory sensor required by vehicles for China’s Phase VI Vehicle Exhaust Emission Regulations or Euro Phase VI Vehicle Exhaust Emission Regulations. The smart NOx sensor is a key sensor device for improving fuel efficiency and reducing pollution. Moreover, its measurement performance includes dynamic immunity to interference, response speed, and measurement accuracy, which are key factors affecting vehicle emissions. This paper focuses on the impact of the physical structure, electrode characteristics, and control strategies of the sensor on its performance during the application. An excellent sensor structure, electrode structure, and control strategy are given based on application analysis and experimental testing. The results show that the application performance of this smart NOx sensor meets the requirements of exhaust aftertreatment systems

    Research on Application Characteristics of Zirconia-Based High-Temperature NOx Sensors

    No full text
    The zirconia solid electrolyte SOFC (solid oxide fuel cell) has the characteristics of oxygen ion conduction function, high-temperature resistance, thermoelectric coupling effect, etc. A NOx sensor based on zirconia solid electrolyte has common characteristics and problems with the SOFC in principle and application. The research objective of this paper is to solve the application problems of smart NOx sensors in diesel vehicles or gasoline vehicles. Improvements in the application performance of the NOx sensor can help the NOx emissions of gasoline vehicles or diesel vehicles better meet the requirements of emission regulations. The smart NOx sensor is a regulatory sensor required by vehicles for China’s Phase VI Vehicle Exhaust Emission Regulations or Euro Phase VI Vehicle Exhaust Emission Regulations. The smart NOx sensor is a key sensor device for improving fuel efficiency and reducing pollution. Moreover, its measurement performance includes dynamic immunity to interference, response speed, and measurement accuracy, which are key factors affecting vehicle emissions. This paper focuses on the impact of the physical structure, electrode characteristics, and control strategies of the sensor on its performance during the application. An excellent sensor structure, electrode structure, and control strategy are given based on application analysis and experimental testing. The results show that the application performance of this smart NOx sensor meets the requirements of exhaust aftertreatment systems

    Comparative efficacy and safety of different combinations of three CDK4/6 inhibitors with endocrine therapies in HR+/HER-2 − metastatic or advanced breast cancer patients: a network meta-analysis

    No full text
    Abstract Background This network meta-analysis aimed to assess the comparative efficacy and safety of combinations involving three cyclin-dependent kinase 4/6 (CDK4/6) inhibitors and endocrine therapies (ETs) in patients with metastatic or advanced breast cancer (BC) who are hormone receptor-positive (HR+) and human epidermal growth factor receptor 2-negative (HER2-). Methods We initially identified relevant studies from previous meta-analyses and then conducted a comprehensive search of PubMed, Embase, and the Cochrane Central Register of Controlled Trials (CENTRAL) databases to locate additional studies published between February 2020 and September 2021. Essential data were extracted, and a network meta-analysis was performed using R 4.1.1 software with a random-effects model. Furthermore, we assigned rankings to all available treatment combinations by calculating their cumulative probability. Results Data analysis included ten reports from nine studies. Pooled results demonstrated that each treatment combination significantly reduced the hazard risk of progression-free survival (PFS) compared to treatment with an aromatase inhibitor (AI) or fulvestrant alone. However, there were no differences observed in PFS or overall survival (OS) among the different treatment combinations. Additionally, patients receiving palbociclib plus AI and abemaciclib plus AI or fulvestrant experienced more severe adverse events (AEs), with hazard ratios (HRs) of 10.83 (95% confidence interval [CI] = 2.3 to 52.51) and 4.8 (95%CI = 1.41 to 16.21), respectively. The HR for ribociclib plus AI was 9.45 (95%CI = 2.02 to 43.61), and the HR for palbociclib plus fulvestrant was 6.33 (95%CI = 1.03 to 39.86). Based on the ranking probabilities, palbociclib plus fulvestrant had the highest probability of achieving superior PFS (37.65%), followed by abemaciclib plus fulvestrant (28.76%). For OS, ribociclib plus fulvestrant ranked first (34.11%), with abemaciclib plus fulvestrant in second place (25.75%). In terms of safety, palbociclib plus AI (53.98%) or fulvestrant (51.37%) had the highest probabilities of being associated with adverse events. Conclusions Abemaciclib plus fulvestrant or ribociclib plus AI appear to be effective and relatively safe for the treatment of HR+/HER2- metastatic or advanced BC patients. However, given the reliance on limited evidence, our findings require further validation through additional studies

    Tetrahydrocurcumin Improves Lipopolysaccharide-induced Myocardial Dysfunction By Inhibiting Oxidative Stress and Inflammation Via JNK/ERK Signaling Pathway Regulation

    No full text
    Background Acute myocardial dysfunction in patients with sepsis is attributed to oxidative stress, inflammation, and cardiomyocyte loss; however, specific drugs for its prevention are still lacking. Tetrahydrocurcumin (THC) has been proven to contribute to the prevention of various cardiovascular diseases by decreasing oxidative stress and inflammation. This study was performed to investigate the functions and mechanism of action of THC in septic cardiomyopathy. Methods After the oral administration of THC (120 mg/kg) for 5 consecutive days, a mouse model of sepsis was established via intraperitoneal lipopolysaccharide (LPS, 10 mg/kg) injection. Following this, cardiac function was assessed, pathological section staining was performed, and inflammatory markers were detected. Results Myocardial systolic function was severely compromised in parallel with the accumulation of reactive oxygen species and enhanced cardiomyocyte apoptosis in mice with sepsis. These adverse changes were markedly reversed in response to THC treatment in septic mice as well as in LPS-treated H9c2 cells. Mechanistically, THC inhibited the release of pro-inflammatory cytokines, including tumor necrosis factor alpha, interleukin (IL)-1β, and IL-6, by upregulating mitogen-activated protein kinase phosphatase 1, to block the phosphorylation of c-Jun N-terminal kinase (JNK) and extracellular signal-regulated protein kinase (ERK). Additionally, THC enhanced the levels of antioxidant proteins, including nuclear factor-erythroid 2-related factor 2, superoxide dismutase 2, and NAD(P)H quinone oxidoreductase 1, while decreasing gp91phox expression. Furthermore, upon THC treatment, Bcl-2 expression was significantly increased, along with a decline in Bax and cleaved caspase-3 expression, which reduced cardiomyocyte loss. Conclusion Our findings indicate that THC exhibited protective potential against septic cardiomyopathy by reducing oxidative stress and inflammation through the regulation of JNK/ERK signaling. The findings of this study provide a basis for the further evaluation of THC as a therapeutic agent against septic cardiomyopathy

    Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia

    No full text
    Flowering time (i.e., heading date in crops) is an important ecological trait that determines growing seasons and regional adaptability of plants to specific natural environments. Rice (Oryza sativa L.) is a short-day plant that originated in the tropics. Increasing evidence suggests that the northward expansion of cultivated rice was accompanied by human selection of the heading date under noninductive long-day (LD) conditions. We report here the molecular cloning and characterization of DTH2 (for Days to heading on chromosome 2), a minor-effect quantitative trait locus that promotes heading under LD conditions. We show that DTH2 encodes a CONSTANS-like protein that promotes heading by inducing the florigen genes Heading date 3a and RICE FLOWERING LOCUS T 1, and it acts independently of the known floral integrators Heading date 1 and Early heading date 1. Moreover, association analysis and transgenic experiments identified two functional nucleotide polymorphisms in DTH2 that correlated with early heading and increased reproductive fitness under natural LD conditions in northern Asia. Our combined population genetics and network analyses suggest that DTH2 likely represents a target of human selection for adaptation to LD conditions during rice domestication and/or improvement, demonstrating an important role of minor-effect quantitative trait loci in crop adaptation and breeding
    corecore