42 research outputs found

    Quantifying N response and N use efficiency in Rice-Wheat (RW) cropping systems under different water management

    Get PDF
    About 0·10 of the food supply in China is produced in rice¿wheat (RW) cropping systems. In recent decades, nitrogen (N) input associated with intensification has increased much more rapidly than N use in these systems. The resulting nitrogen surplus increases the risk of environmental pollution as well as production costs. Limited information on N dynamics in RW systems in relation to water management hampers development of management practices leading to more efficient use of nitrogen and water. The present work studied the effects of N and water management on yields of rice and wheat, and nitrogen use efficiencies (NUEs) in RW systems. A RW field experiment with nitrogen rates from 0 to 300 kg N/ha with continuously flooded and intermittently irrigated rice crops was carried out at the Jiangpu experimental station of Nanjing Agricultural University of China from 2002 to 2004 to identify improved nitrogen management practices in terms of land productivity and NUE. Nitrogen uptake by rice and wheat increased with increasing N rates, while agronomic NUE (kg grain/kg N applied) declined at rates exceeding 150 kg N/ha. The highest combined grain yields of rice and wheat were obtained at 150 and 300 kg N/ha per season in rice and wheat, respectively. Carry-over of residual N from rice to the subsequent wheat crop was limited, consistent with low soil nitrate after rice harvest. Total soil N hardly changed during the experiment, while soil nitrate was much lower after wheat than after rice harvest. Water management did not affect yield and N uptake by rice, but apparent N recovery was higher under intermittent irrigation (II). In one season, II management in rice resulted in higher yield and N uptake in the subsequent wheat season. Uptake of indigenous soil N was much higher in rice than in wheat, while in rice it was much higher than values reported in the literature, which may have consequences for nitrogen fertilizer recommendations based on indigenous N suppl

    Reforestation in southern China: revisiting soil N mineralization and nitrification after 8 years restoration

    Get PDF
    Nitrogen availability and tree species selection play important roles in reforestation. However, long-term field studies on the effects and mechanisms of tree species composition on N transformation are very limited. Eight years after tree seedlings were planted in a field experiment, we revisited the site and tested how tree species composition affects the dynamics of N mineralization and nitrification. Both tree species composition and season significantly influenced the soil dissolved organic carbon (DOC) and nitrogen (DON). N-fixing Acacia crassicarpa monoculture had the highest DON, and 10-mixed species plantation had the highest DOC. The lowest DOC and DON concentrations were both observed in Eucalyptus urophylla monoculture. The tree species composition also significantly affected net N mineralization rates. The highest rate of net N mineralization was found in A. crassicarpa monoculture, which was over twice than that in Castanopsis hystrix monoculture. The annual net N mineralization rates of 10-mixed and 30-mixed plantations were similar as that of N-fixing monoculture. Since mixed plantations have good performance in increasing soil DOC, DON, N mineralization and plant biodiversity, we recommend that mixed species plantations should be used as a sustainable approach for the restoration of degraded land in southern China

    Molecular Characterization of Highly Pathogenic H5N1 Avian Influenza A Viruses Isolated from Raccoon Dogs in China

    Get PDF
    The highly pathogenic avian influenza H5N1 virus can infect a variety of animals and continually poses a threat to animal and human health. While many genotypes of H5N1 virus can be found in chicken, few are associated with the infection of mammals. Characterization of the genotypes of viral strains in animal populations is important to understand the distribution of different viral strains in various hosts. This also facilitates the surveillance and detection of possible emergence of highly pathogenic strains of specific genotypes from unknown hosts or hosts that have not been previously reported to carry these genotypes.Two H5N1 isolates were obtained from lung samples of two raccoon dogs that had died from respiratory disease in China. Pathogenicity experiments showed that the isolates were highly pathogenic to chicken. To characterize the genotypes of these viruses, their genomic sequences were determined and analyzed. The genetic contents of these isolates are virtually identical and they may come from the same progenitor virus. Phylogenetic analysis indicated that the isolates were genetically closely related to genotype V H5N1 virus, which was first isolated in China in 2003, and were distinct from the dominant virus genotypes (e.g. genotype Z) of recent years. The isolates also contain a multibasic amino acid motif at their HA cleavage sites and have an E residue at position 627 of the PB2 protein similar to the previously-identified avian viruses.This is the first report that genotype V H5N1 virus is found to be associated with a mammalian host. Our results strongly suggest that genotype V H5N1 virus has the ability to cross species barriers to infect mammalian animals. These findings further highlight the risk that avian influenza H5N1 virus poses to mammals and humans, which may be infected by specific genotypes that are not known to infect these hosts

    Synthesis and Characterization of Sucrose-Melamine-Formaldehyde Adhesives

    No full text
    The objective of this project was to use sucrose as a partial substitute for melamine in the synthesis of sucrose–melamine-formaldehyde (SMF) resin. The SMF was synthesized in a base condition. The wet bonding strength, shelf life, and formaldehyde emission of the SMF resin were determined. Fourier transform infrared spectroscopy (FT-IR) and mass spectroscopy (MS) were employed to analyze the chemical structure of the SMF resin. The shelf life of SMF resin increased as the sucrose content increased. Also as the sucrose content increased, the wet bonding strength decreased and the formaldehyde emissions decreased. The FT-IR and MS spectra revealed the structures of sucrose, melamine, and formaldehyde in the SMF, and chemical reactions of SMF resins occurred between the three primary hydroxyl groups of sucrose and methylolmelamine. Based on the results of this study, a sucrose to melamine mole ratio of 0.4:1 was determined to be the optimal ratio for the SMF resin
    corecore