28 research outputs found

    Effects of nitrate on the treatment of lead contaminated groundwater by nanoscale zerovalent iron

    Full text link
    Nanoscale zerovalent iron (nZVI) is efficient for removing Pb(2+) and nitrate from water. However, the influence of nitrate, a common groundwater anion, on Pb(2+) removal by nZVI is not well understood. In this study, we showed that under excess Fe(0) conditions (molar ratio of Fe(0)/nitrate>4), Pb(2+) ions were immobilized more quickly (<5 min) than in nitrate-free systems (∼ 15 min) due to increasing pH. With nitrate in excess (molar ratio of Fe(0)/nitrate<4), nitrate stimulated the formation of crystal PbxFe3-xO4 (ferrite), which provided additional Pb(2+) removal. However, ∼ 7% of immobilized Pb(2+) ions were released into aqueous phase within 2h due to ferrite deformation. Oxidation-reduction potential (ORP) values below -600 mV correlated with excess Fe(0) conditions (complete Pb(2+) immobilization), while ORP values ≥-475 mV characterized excess nitrate conditions (ferrite process and Pb(2+) release occurrence). This study indicates that ORP monitoring is important for proper management of nZVI-based remediation in the subsurface to avoid lead remobilization in the presence of nitrate

    Selection of 110 kV Prefabricated Steel Substations Considering Seismic Vulnerability in China

    No full text
    Prefabricated modular substations are expected to become the mainstream construction type for substations in China. However, there is a lack of scientific basis for structural selection and seismic performance evaluation. Taking a 110 kV substation as an example, this study compares the construction cost of cast-in situ reinforced concrete (RC) substations and prefabricated steel (PS) ones. Two types of PS structures are considered: one with H-section steel columns and the other with box-section steel columns. A seismic vulnerability analysis is performed to compare the probability distribution of various damage states of substation building structures under different seismic damage levels. Results indicate that the construction cost of PS structures is approximately 27.9% higher than that of cast-in situ concrete. When using H-section steel columns, there is a significant difference in the flexural stiffness in two horizontal directions, resulting in reduced seismic performance in the weak-axis direction. The construction cost of using box-section steel columns is slightly higher than that of the H-section steel case, but its seismic performance is significantly improved. Although the probability of slight and moderate damage states for the box-section steel column scheme is generally higher than that of the cast-in situ RC scheme, the probability of collapse is reduced. Thus, box-section steel columns are recommended for prefabricated modular substation building structures

    A model of degree of scattering polarization for oil spilling

    No full text
    Oil slicks often show uncertain surface roughness and Fresnel reflection parameters. Consequently, differentiating oil spilled on the seawater in these areas using optical sensors is a challenge. Therefore, the optical mechanism of the oil film has been studied by the Maxwell equation. It is found that the polarization characteristics of the oil slicks can help us to overcome this problem. According to the Fresnel formula, the scattering coefficient and scattering rate of the homogeneous oil film have been deduced, and the phase difference of the scattering electromagnetic wave has also been calculated to verify the accuracy of the model. The parameter, a degree of scattering polarization, has been derived to identify the oil slicks on the sea wave. It depends on accurately knowing the Stokes parameter for the reflected light, and varies with the refractive index of the surface layer and viewing angles. The actual spilled oil has been measured by this model, and the oil film can be accurately identified at various angles. These preliminary results suggest that the potential of multi-angle polarization measurement of ocean surface needs further researches

    Two-Way Generation of High-Resolution EO and SAR Images via Dual Distortion-Adaptive GANs

    No full text
    Synthetic aperture radar (SAR) provides an all-weather and all-time imaging platform, which is more reliable than electro-optical (EO) remote sensing imagery under extreme weather/lighting conditions. While many large-scale EO-based remote sensing datasets have been released for computer vision tasks, there are few publicly available SAR image datasets due to the high costs associated with acquisition and labeling. Recent works have applied deep learning methods for image translation between SAR and EO. However, the effectiveness of those techniques on high-resolution images has been hindered by a common limitation. Non-linear geometric distortions, induced by different imaging principles of optical and radar sensors, have caused insufficient pixel-wise correspondence between an EO-SAR patch pair. Such a phenomenon is not prominent in low-resolution EO-SAR datasets, e.g., SEN1-2, one of the most frequently used datasets, and thus has been seldom discussed. To address this issue, a new dataset SN6-SAROPT with sub-meter resolution is introduced, and a novel image translation algorithm designed to tackle geometric distortions adaptively is proposed in this paper. Extensive experiments have been conducted to evaluate the proposed algorithm, and the results have validated its superiority over other methods for both SAR to EO (S2E) and EO to SAR (E2S) tasks, especially for urban areas in high-resolution images

    Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    No full text
    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method

    Uniform Scattering Power for Monitoring the Spilled Oil on the Sea

    No full text

    Left ventricular remodeling in hypertrophic cardiomyopathy patients with atrial fibrillation

    No full text
    Abstract Background Atrial fibrillation (AF) is the most common complication in hypertrophic cardiomyopathy (HCM). The mechanisms of AF is associated with left atrial (LA) structural remodeling in HCM patients. However, the impact of left ventricular (LV) remodeling on the presence of AF in HCM patients has not been evaluated yet. We sought to investigate effect of LV remodeling on the presence of AF assessed by cardiovascular magnetic resonance (CMR) in HCM patients. Methods A total of 394 HCM patients were enrolled into this study, including HOCM patients (n = 293) and NOHCM patients (n = 101). Patients were divided into HCM with AF (50) and HCM without AF (n = 344). Data were collected from hospital records. Results LA diameter and LV remodeling index (LVRI) were significantly higher in HCM patients with AF than that of HCM patients without AF (46.6 ± 7.4 mm versus 39.9 ± 8.0 mm, p < 0.001, and 1.46 ± 0.6 versus 1.2 ± 0.4, p = 0.002, respectively). HCM patients with AF were older than HCM patients without AF (53.6 ± 11.7 years versus 47.7 ± 13.6 years, p = 0.002). Additionally, LVRI positively correlated to LA size (r = 0.12, p = 0.02). In a multivariable logistic regression analysis, when adjusting for age and LV end diastolic mass index, LVRI and LA size remained an independent determinant of AF in HCM patients (OR = 4.7, p = 0.001 and OR = 1.13, P < 0.001). Conclusion HCM patients with AF showed significantly more LA diameter, LVRI and age than HCM patients without AF. LVRI and LA size were strong independent predictor of AF in HCM, suggesting LV remodeling may contribute to the occurrence of AF in HCM patients

    Simplified, rapid, and inexpensive estimation of water primary productivity based on chlorophyll fluorescence parameter

    No full text
    Primary productivity in water environment relies on the photosynthetic production of microalgae. Chlorophyll fluorescence is widely used to detect the growth status and photosynthetic efficiency of microalgae. In this study, a method was established to determine the Chl a content, cell density of microalgae, and water primary productivity by measuring chlorophyll fluorescence parameter Fo. A significant linear relationship between chlorophyll fluorescence parameter Fo and Chl a content of microalgae, as well as between Fo and cell density, was observed under pure-culture conditions. Furthermore, water samples collected from natural aquaculture ponds were used to validate the correlation between Fo and water primary productivity, which is closely related to Chl a content in water. Thus, for a given pure culture of microalgae or phytoplankton (mainly microalgae) in aquaculture ponds or other natural ponds for which the relationship between the Fo value and Chl a content or cell density could be established, Chl a content or cell density could be determined by measuring the Fo value, thereby making it possible to calculate the water primary productivity. It is believed that this method can provide a convenient way of efficiently estimating the primary productivity in natural aquaculture ponds and bringing economic value in limnetic ecology assessment, as well as in algal bloom monitoring. (C) 2017 Elsevier GmbH. All rights reserved.</p
    corecore