283 research outputs found

    Self-consistent local-equilibrium model for density profile and distribution of dissipative currents in a Hall bar under strong magnetic fields

    Full text link
    Recent spatially resolved measurements of the electrostatic-potential variation across a Hall bar in strong magnetic fields, which revealed a clear correlation between current-carrying strips and incompressible strips expected near the edges of the Hall bar, cannot be understood on the basis of existing equilibrium theories. To explain these experiments, we generalize the Thomas-Fermi--Poisson approach for the self-consistent calculation of electrostatic potential and electron density in {\em total} thermal equilibrium to a {\em local equilibrium} theory that allows to treat finite gradients of the electrochemical potential as driving forces of currents in the presence of dissipation. A conventional conductivity model with small values of the longitudinal conductivity for integer values of the (local) Landau-level filling factor shows that, in apparent agreement with experiment, the current density is localized near incompressible strips, whose location and width in turn depend on the applied current.Comment: 9 pages, 7 figure

    Diffusing-wave spectroscopy of nonergodic media

    Full text link
    We introduce an elegant method which allows the application of diffusing-wave spectroscopy (DWS) to nonergodic, solid-like samples. The method is based on the idea that light transmitted through a sandwich of two turbid cells can be considered ergodic even though only the second cell is ergodic. If absorption and/or leakage of light take place at the interface between the cells, we establish a so-called "multiplication rule", which relates the intensity autocorrelation function of light transmitted through the double-cell sandwich to the autocorrelation functions of individual cells by a simple multiplication. To test the proposed method, we perform a series of DWS experiments using colloidal gels as model nonergodic media. Our experimental data are consistent with the theoretical predictions, allowing quantitative characterization of nonergodic media and demonstrating the validity of the proposed technique.Comment: RevTeX, 12 pages, 6 figures. Accepted for publication in Phys. Rev.

    High resolution amplitude and phase gratings in atom optics

    Full text link
    An atom-field geometry is chosen in which an atomic beam traverses a field interaction zone consisting of three fields, one having frequency Ω=c/λ\Omega =c/\lambda propagating in the z^\hat{z} direction and the other two having frequencies Ω+δ1\Omega +\delta_{1} and Ω+δ2\Omega +\delta_{2} propagating in the -z^\hat{z} direction. For n1δ1+n2δ2=0n_{1}\delta_{1}+n_{2}\delta_{2}=0 and δ1T,δ2T1|\delta_{1}| T,|\delta_{2}| T\gg 1, where n1n_{1} and n2n_{2} are positive integers and TT is the pulse duration in the atomic rest frame, the atom-field interaction results in the creation of atom amplitude and phase gratings having period λ/[2(n1+n2)]% \lambda /[2(n_{1}+n_{2})]. In this manner, one can use optical fields having wavelength λ\lambda to produce atom gratings having periodicity much less than λ\lambda .Comment: 11 pages, 14 figure

    Multiple light scattering in anisotropic random media

    Full text link
    In the last decade Diffusing Wave Spectroscopy (DWS) has emerged as a powerful tool to study turbid media. In this article we develop the formalism to describe light diffusion in general anisotropic turbid media. We give explicit formulas to calculate the diffusion tensor and the dynamic absorption coefficient, measured in DWS experiments. We apply our theory to uniaxial systems, namely nematic liquid crystals, where light is scattered from thermal fluctuations of the local optical axis, called director. We perform a detailed analysis of the two essential diffusion constants, parallel and perpendicular to the director, in terms of Frank elastic constants, dielectric anisotropy, and applied magnetic field. We also point out the relevance of our results to different liquid crystalline systems, such as discotic nematics, smectic-A phases, and polymer liquid crystals. Finally, we show that the dynamic absorption coefficient is the angular average over the inverse viscosity, which governs the dynamics of director fluctuations.Comment: 23 pages, 12 ps figures, to be published in Phys. Rev.

    Temporal fluctuations of waves in weakly nonlinear disordered media

    Full text link
    We consider the multiple scattering of a scalar wave in a disordered medium with a weak nonlinearity of Kerr type. The perturbation theory, developed to calculate the temporal autocorrelation function of scattered wave, fails at short correlation times. A self-consistent calculation shows that for nonlinearities exceeding a certain threshold value, the multiple-scattering speckle pattern becomes unstable and exhibits spontaneous fluctuations even in the absence of scatterer motion. The instability is due to a distributed feedback in the system "coherent wave + nonlinear disordered medium". The feedback is provided by the multiple scattering. The development of instability is independent of the sign of nonlinearity.Comment: RevTeX, 15 pages (including 5 figures), accepted for publication in Phys. Rev.

    Calmodulin Interaction with hEAG1 Visualized by FRET Microscopy

    Get PDF
    BACKGROUND: Ca(2+)-mediated regulation of ion channels provides a link between intracellular signaling pathways and membrane electrical activity. Intracellular Ca(2+) inhibits the voltage-gated potassium channel EAG1 through the direct binding of calmodulin (CaM). Three CaM binding sites (BD-C1: 674-683, BD-C2: 711-721, BD-N: 151-165) have been identified in a peptide screen and were proposed to mediate binding. The participation of the three sites in CaM binding to the native channel, however, remains unclear. METHODOLOGY/PRINCIPAL FINDINGS: Here we studied the binding of Ca(2+)/CaM to the EAG channel by visualizing the interaction between YFP-labeled CaM and Cerulean-labeled hEAG1 in mammalian cells by FRET. The results of our cellular approach substantiate that two CaM binding sites are predominantly involved; the high-affinity 1-8-14 based CaM binding domain in the N-terminus and the second C-terminal binding domain BD-C2. Mutations at these sites completely abolished CaM binding to hEAG1. CONCLUSIONS/SIGNIFICANCE: We demonstrated that the BD-N and BD-C2 binding domains are sufficient for CaM binding to the native channel, and, therefore, that BD-C1 is unable to bind CaM independently

    The deuteron: structure and form factors

    Get PDF
    A brief review of the history of the discovery of the deuteron in provided. The current status of both experiment and theory for the elastic electron scattering is then presented.Comment: 80 pages, 33 figures, submited to Advances in Nuclear Physic

    Lattice Boltzmann simulations of soft matter systems

    Full text link
    This article concerns numerical simulations of the dynamics of particles immersed in a continuum solvent. As prototypical systems, we consider colloidal dispersions of spherical particles and solutions of uncharged polymers. After a brief explanation of the concept of hydrodynamic interactions, we give a general overview over the various simulation methods that have been developed to cope with the resulting computational problems. We then focus on the approach we have developed, which couples a system of particles to a lattice Boltzmann model representing the solvent degrees of freedom. The standard D3Q19 lattice Boltzmann model is derived and explained in depth, followed by a detailed discussion of complementary methods for the coupling of solvent and solute. Colloidal dispersions are best described in terms of extended particles with appropriate boundary conditions at the surfaces, while particles with internal degrees of freedom are easier to simulate as an arrangement of mass points with frictional coupling to the solvent. In both cases, particular care has been taken to simulate thermal fluctuations in a consistent way. The usefulness of this methodology is illustrated by studies from our own research, where the dynamics of colloidal and polymeric systems has been investigated in both equilibrium and nonequilibrium situations.Comment: Review article, submitted to Advances in Polymer Science. 16 figures, 76 page

    Characterization of global microRNA expression reveals oncogenic potential of miR-145 in metastatic colorectal cancer

    Get PDF
    Background: MicroRNAs (MiRNAs) are short non-coding RNAs that control protein expression through various mechanisms. Their altered expression has been shown to be associated with various cancers. The aim of this study was to profile miRNA expression in colorectal cancer (CRC) and to analyze the function of specific miRNAs in CRC cells. MirVana miRNA Bioarrays were used to determine the miRNA expression profile in eight CRC cell line models, 45 human CRC samples of different stages, and four matched normal colon tissue samples. SW620 CRC cells were stably transduced with miR-143 or miR-145 expression vectors and analyzed in vitro for cell proliferation, cell differentiation and anchorage-independent growth. Signalling pathways associated with differentially expressed miRNAs were identified using a gene set enrichment analysis. Results: The expression analysis of clinical CRC samples identified 37 miRNAs that were differentially expressed between CRC and normal tissue. Furthermore, several of these miRNAs were associated with CRC tumor progression including loss of miR-133a and gain of miR-224. We identified 11 common miRNAs that were differentially expressed between normal colon and CRC in both the cell line models and clinical samples. In vitro functional studies indicated that miR-143 and miR-145 appear to function in opposing manners to either inhibit or augment cell proliferation in a metastatic CRC model. The pathways targeted by miR-143 and miR-145 showed no significant overlap. Furthermore, gene expression analysis of metastatic versus non-metastatic isogenic cell lines indicated that miR-145 targets involved in cell cycle and neuregulin pathways were significantly down-regulated in the metastatic context. Conclusion: MiRNAs showing altered expression at different stages of CRC could be targets for CRC therapies and be further developed as potential diagnostic and prognostic analytes. The identified biological processes and signalling pathways collectively targeted by co-expressed miRNAs in CRC provide a basis for understanding the functional role of miRNAs in cancer. © 2009 Arndt et al; licensee BioMed Central Ltd
    corecore