702 research outputs found

    Drainage in a model stratified porous medium

    Full text link
    We show that when a non-wetting fluid drains a stratified porous medium at sufficiently small capillary numbers Ca, it flows only through the coarsest stratum of the medium; by contrast, above a threshold Ca, the non-wetting fluid is also forced laterally, into part of the adjacent, finer strata. The spatial extent of this partial invasion increases with Ca. We quantitatively understand this behavior by balancing the stratum-scale viscous pressure driving the flow with the capillary pressure required to invade individual pores. Because geological formations are frequently stratified, we anticipate that our results will be relevant to a number of important applications, including understanding oil migration, preventing groundwater contamination, and sub-surface CO2_{2} storage

    Local pore size correlations determine flow distributions in porous media

    Full text link
    The relationship between the microstructure of a porous medium and the observed flow distribution is still a puzzle. We resolve it with an analytical model, where the local correlations between adjacent pores, which determine the distribution of flows propagated from one pore downstream, predict the flow distribution. Numerical simulations of a two-dimensional porous medium verify the model and clearly show the transition of flow distributions from δ\delta-function-like via Gaussians to exponential with increasing disorder. Comparison to experimental data further verifies our numerical approach.Comment: 5 pages, 3 figures, supplemental materia

    Microwave Dielectric Heating of Drops in Microfluidic Devices

    Get PDF
    We present a technique to locally and rapidly heat water drops in microfluidic devices with microwave dielectric heating. Water absorbs microwave power more efficiently than polymers, glass, and oils due to its permanent molecular dipole moment that has a large dielectric loss at GHz frequencies. The relevant heat capacity of the system is a single thermally isolated picoliter drop of water and this enables very fast thermal cycling. We demonstrate microwave dielectric heating in a microfluidic device that integrates a flow-focusing drop maker, drop splitters, and metal electrodes to locally deliver microwave power from an inexpensive, commercially available 3.0 GHz source and amplifier. The temperature of the drops is measured by observing the temperature dependent fluorescence intensity of cadmium selenide nanocrystals suspended in the water drops. We demonstrate characteristic heating times as short as 15 ms to steady-state temperatures as large as 30 degrees C above the base temperature of the microfluidic device. Many common biological and chemical applications require rapid and local control of temperature, such as PCR amplification of DNA, and can benefit from this new technique.Comment: 6 pages, 4 figure
    • …
    corecore