228 research outputs found

    Intergenerational Test Generation for Natural Language Processing Applications

    Full text link
    The development of modern NLP applications often relies on various benchmark datasets containing plenty of manually labeled tests to evaluate performance. While constructing datasets often costs many resources, the performance on the held-out data may not properly reflect their capability in real-world application scenarios and thus cause tremendous misunderstanding and monetary loss. To alleviate this problem, in this paper, we propose an automated test generation method for detecting erroneous behaviors of various NLP applications. Our method is designed based on the sentence parsing process of classic linguistics, and thus it is capable of assembling basic grammatical elements and adjuncts into a grammatically correct test with proper oracle information. We implement this method into NLPLego, which is designed to fully exploit the potential of seed sentences to automate the test generation. NLPLego disassembles the seed sentence into the template and adjuncts and then generates new sentences by assembling context-appropriate adjuncts with the template in a specific order. Unlike the taskspecific methods, the tests generated by NLPLego have derivation relations and different degrees of variation, which makes constructing appropriate metamorphic relations easier. Thus, NLPLego is general, meaning it can meet the testing requirements of various NLP applications. To validate NLPLego, we experiment with three common NLP tasks, identifying failures in four state-of-art models. Given seed tests from SQuAD 2.0, SST, and QQP, NLPLego successfully detects 1,732, 5301, and 261,879 incorrect behaviors with around 95.7% precision in three tasks, respectively

    Amino acid recognition by a fluorescent chemosensor based on cucurbit[8]uril and acridine hydrochloride

    Get PDF
    A new fluorescent chemosensor comprised of cucurbit[8]uril (Q[8]) and acridine hydrochloride (AC) has been designed and utilized for the recognition of amino acids. The AC was encapsulated by the Q[8] cavity and formed a 1:2 host-guest inclusion complex both in solution (aqueous) and in the solid-state. Whilst free AC is known to be strongly fluorescent, this strong fluorescence was quenched in the inclusion complex Q[8]-AC. This non-fluorescent complex Q[8]-AC was capable of serving as a fluorescence “off-on” probe, and was able to recognize either L-Phe or L-Trp via the competitive interaction between L-Phe or L-Trp. Moreover, the pH responsive nature of the probe allowed for the detection of basic amino acids, namely L-Arg, L-His, or L-Lys). As a result, a fluorescence method for the detection of five amino acids using a single system has been developed

    An improved wave equation of fractured-porous media for predicting reservoir permeability

    Get PDF
    The wave characteristics of fractured-porous media can be utilized for permeability identification; however, further research is necessary to enhance the accuracy of this identification. A novel wave equation for fractured-porous media is formulated, and theoretical analysis suggests its effectiveness in accurately identifying reservoir permeability. The proposed methodology establishes a wave equation for fractured-porous media using the volume averaging method and employs finite difference method on staggered grids to calculate wave field dispersion and attenuation, exploring the influence of fracture network structure and confining pressure on the solution of the wave equation. By analyzing the wave equation under various aspect ratios and confining pressure of fractures, it is observed that these factors significantly affect velocity and attenuation, providing valuable insights into seismic response in fractured-porous media. Furthermore, the research findings reveal promising potential in utilizing the new wave equations specific to fractured-porous media for permeability identification purposes. By constructing a three-dimensional fractured-porous network model, the wave equation for permeability identification can examine the correlation between the parameters of the equation and permeability, and establishes an association between fracture parameters and permeability, paving the way for a novel approach to permeability identification

    Clinical efficacy of the combined use of levofloxacin and different courses of isoniazid and rifampicin in the treatment of mild spinal tuberculosis

    Get PDF
    Purpose: To investigate the clinical effectiveness of the combined use of levofloxacin and different courses of isoniazid and rifampicin in the treatment of mild spinal tuberculosis (TB). Methods: The clinic data of 100 patients with light spinal TB were retrospectively reviewed. A double-blind technique was used to divide the patients into 6-month treatment group (M6 group, n = 32), 12-month treatment group (M12 group, n = 34) and 18-month treatment group (M18 group, n = 34). All patients were given isoniazid and rifampicin, in combination with levofloxacin. The effects of the different treatment courses on mild spinal TB were determined. Results: There were significantly higher post-treatment levels of inflammatory factors in M6 group than in M12 and M18 groups (p < 0.001). Moreover, there were significantly higher Visual Analogue Scale (VAS) score and erythrocyte sedimentation rate (ESR), and larger focus size in M6 group than in M12 and M18 groups (p < 0.05). However, after treatment, M18 group had significantly higher total incidence of adverse reactions than M6 and M12 groups (p < 0.05). Conclusion: Compared with the short-course treatment, long-course treatment with isoniazid and rifampicin in combination with levofloxacin is more effective in reducing the levels of inflammatory factors and decreasing focus size in patients with mild spinal TB. However, patients given the 18-month treatment tend to develop more adverse reactions. Therefore, 12-month treatment with the combined therapy is a better therapeutic option

    Elastic Valley Spin Controlled Chiral Coupling in Topological Valley Phononic Crystals

    Full text link
    Distinct from the phononic valley pseudo-spin, the real physical spin of elastic waves adds a novel tool-kit capable of envisaging the valley-spin physics of topological valley phononic crystals from a local viewpoint. Here, we report the observation of local elastic valley spin as well as the hidden elastic spin-valley locking mechanism overlooked before. We demonstrate that the selective one-way routing of valley phonon states along the topological interface can be reversed by imposing the elastic spin meta-source at different interface locations with opposite valley-spin correspondence. We unveil the physical mechanism of selective directionality as the elastic spin controlled chiral coupling of valley phonon states, through both analytical theory and experimental measurement of the opposite local elastic spin density at different interface locations for different transport directions. The elastic spin of valley topological edge phonons can be extended to other topological states and offers new tool to explore topological metamaterials.Comment: 5 pages, 3 figures, of main text + supplementary 10 figures. To be published in Phys. Rev. Let

    A Novel Injectable Borate Bioactive Glass Cement As an Antibiotic Delivery Vehicle for Treating Osteomyelitis

    Get PDF
    Background: A novel injectable cement composed of chitosan-bonded borate bioactive glass (BG) particles was evaluated as a carrier for local delivery of vancomycin in the treatment of osteomyelitis in a rabbit tibial model. Materials and Methods: The setting time, injectability, and compressive strength of the borate BG cement, and the release profile of vancomycin from the cement were measured in vitro. The capacity of the vancomycin-loaded BG cement to eradicate methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis in rabbit tibiae in vivo was evaluated and compared with that for a vancomycin-loaded calcium sulfate (CS) cement and for intravenous injection of vancomycin. Results: The BG cement had an injectability of \u3e90% during the first 3 minutes after mixing, hardened within 30 minutes and, after hardening, had a compressive strength of 18±2 MPa. Vancomycin was released from the BG cement into phosphate-buffered saline for up to 36 days, and the cumulative amount of vancomycin released was 86% of the amount initially loaded into the cement. In comparison, vancomycin was released from the CS cement for up 28 days and the cumulative amount released was 89%. Two months post-surgery, radiography and microbiological tests showed that the BG and CS cements had a better ability to eradicate osteomyelitis when compared to intravenous injection of vancomycin, but there was no significant difference between the BG and CS cements in eradicating the infection. Histological examination showed that the BG cement was biocompatible and had a good capacity for regenerating bone in the tibial defects. Conclusions: These results indicate that borate BG cement is a promising material both as an injectable carrier for vancomycin in the eradication of osteomyelitis and as an osteoconductive matrix to regenerate bone after the infection is cured

    DDC-PIM: Efficient Algorithm/Architecture Co-design for Doubling Data Capacity of SRAM-based Processing-In-Memory

    Full text link
    Processing-in-memory (PIM), as a novel computing paradigm, provides significant performance benefits from the aspect of effective data movement reduction. SRAM-based PIM has been demonstrated as one of the most promising candidates due to its endurance and compatibility. However, the integration density of SRAM-based PIM is much lower than other non-volatile memory-based ones, due to its inherent 6T structure for storing a single bit. Within comparable area constraints, SRAM-based PIM exhibits notably lower capacity. Thus, aiming to unleash its capacity potential, we propose DDC-PIM, an efficient algorithm/architecture co-design methodology that effectively doubles the equivalent data capacity. At the algorithmic level, we propose a filter-wise complementary correlation (FCC) algorithm to obtain a bitwise complementary pair. At the architecture level, we exploit the intrinsic cross-coupled structure of 6T SRAM to store the bitwise complementary pair in their complementary states (Q/Q‾Q/\overline{Q}), thereby maximizing the data capacity of each SRAM cell. The dual-broadcast input structure and reconfigurable unit support both depthwise and pointwise convolution, adhering to the requirements of various neural networks. Evaluation results show that DDC-PIM yields about 2.84×2.84\times speedup on MobileNetV2 and 2.69×2.69\times on EfficientNet-B0 with negligible accuracy loss compared with PIM baseline implementation. Compared with state-of-the-art SRAM-based PIM macros, DDC-PIM achieves up to 8.41×8.41\times and 2.75×2.75\times improvement in weight density and area efficiency, respectively.Comment: 14 pages, to be published in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD

    Reservoir properties and genesis of tight sandstones—A case study from the Gaotaizi oil layer in the Qijia area, Songliao basin

    Get PDF
    The primary focus of oil and gas exploration for tight sandstone reservoirs is on a quantitative characterization of reservoir properties. This paper uses the tight sandstone reservoir developed in the Gaotaizi oil layer in the Qijia area of the Songliao Basin as an example. The petrology, physical properties, pore–throat characteristics, and the genesis of the densification of the oil-bearing sandstones are elucidated using casting thin-sections, scanning electron microscopy, 3D computerized tomography (CT), and petrophysical experimental techniques. The results show that the Gaotaizi oil layer is mainly composed of clastic rocks and contains small amounts of shell limestone. The clastic rocks are mainly lithic feldspar sandstone and feldspar lithic sandstone, while residual intergranular pores, intergranular dissolved pores, intragranular dissolved pores, intragranular pores and intercrystalline pores constitute the different pore types. Mercury intrusion and 3D computerized tomography analysis showed that micro-nano pores account for 53% of the total pores present. The pore–throat coordination number is distributed between 1 and 4, with an average of 1.8. The pores and throats in the Gaotaizi reservoir have poor connectivity. The porosity distribution of the Gaotaizi oil layer is 1.4%–22.5%, with an average of 9.5%, while the permeability distribution ranges from 0.01 to 27.10 mD, with an average of 0.41 mD. It is an ultra-low porosity and ultra-low permeability tight reservoir. The Gaotaizi oil layer is divided into three types of reservoirs through a systematic study of its pore developmental characteristics. Diagenetic processes like compaction and cementation result in a reduction in porosity and permeability. Compaction, calcite and siliceous cementation, and illite packing are primarily responsible for reservoir densification
    • …
    corecore