258 research outputs found

    Time-Dependent Transport Through Molecular Junctions

    Full text link
    We investigate transport properties of molecular junctions under two types of bias--a short time pulse or an AC bias--by combining a solution for the Green functions in the time domain with electronic structure information coming from ab initio density functional calculations. We find that the short time response depends on lead structure, bias voltage, and barrier heights both at the molecule-lead contacts and within molecules. Under a low frequency AC bias, the electron flow either tracks or leads the bias signal (capacitive or resistive response) depending on whether the junction is perfectly conducting or not. For high frequency, the current lags the bias signal due to the kinetic inductance. The transition frequency is an intrinsic property of the junctions.Comment: 5 pages, 9 figure

    The Role of the Exchange-Correlation Potential in ab initio Electron Transport Calculations

    Full text link
    The effect of the exchange-correlation potential in ab initio electron transport calculations is investigated by constructing optimized effective potentials (OEP) using different energy functionals or the electron density from second-order perturbation theory. We calculate electron transmission through two atomic chain systems, one with charge transfer and one without. Dramatic effects are caused by two factors: changes in the energy gap and the self-interaction error. The error in conductance caused by the former is about one order of magnitude while that caused by the latter ranges from several times to two orders of magnitude, depending on the coupling strength and charge transfer. The implications for accurate quantum transport calculations are discussed.Comment: 4 pages, published version, substantially revised discussion and revisions for clarit

    Intermolecular Effect in Molecular Electronics

    Full text link
    We investigate the effects of lateral interactions on the conductance of two molecules connected in parallel to semi-infinite leads. The method we use combines a Green function approach to quantum transport with density functional theory for the electronic properties. The system, modeled after a self-assembled monolayer, consists of benzylmercaptane molecules sandwiched between gold electrodes. We find that the conductance increases when intermolecular interaction comes into play. The source of this increase is the indirect interaction through the gold substrate rather than direct molecule-molecule interaction. A striking resonance is produced only 0.3 eV above the Fermi energy.Comment: 4 pages, 5 figure

    Nanotube-Metal Junctions: 2- and 3- Terminal Electrical Transport

    Full text link
    We address the quality of electrical contact between carbon nanotubes and metallic electrodes by performing first-principles calculations for the electron transmission through ideal 2- and 3-terminal junctions, thus revealing the physical limit of tube-metal conduction. The structural model constructed involves surrounding the tube by the metal atoms of the electrode as in most experiments; we consider metallic (5,5) and n-doped semiconducting (10,0) tubes surrounded by Au or Pd. In the case of metallic tubes, the contact conductance is shown to approach the ideal 4e^2/h in the limit of large contact area. For three-terminals, the division of flux among the different transmission channels depends strongly on the metal material. A Pd electrode has nearly perfect tube-electrode transmission and therefore turns off the straight transport along the tube. Our results are in good agreement with some recent experimental reports and clarify a fundamental discrepancy between theory and experiment.Comment: 5 pages, 5 figures, published version: some modified figures and clarifications in the tex
    • …
    corecore