We investigate transport properties of molecular junctions under two types of
bias--a short time pulse or an AC bias--by combining a solution for the Green
functions in the time domain with electronic structure information coming from
ab initio density functional calculations. We find that the short time response
depends on lead structure, bias voltage, and barrier heights both at the
molecule-lead contacts and within molecules. Under a low frequency AC bias, the
electron flow either tracks or leads the bias signal (capacitive or resistive
response) depending on whether the junction is perfectly conducting or not. For
high frequency, the current lags the bias signal due to the kinetic inductance.
The transition frequency is an intrinsic property of the junctions.Comment: 5 pages, 9 figure