11 research outputs found

    Visualizing sound emission of elephant vocalizations: evidence for two rumble production types

    Get PDF
    Recent comparative data reveal that formant frequencies are cues to body size in animals, due to a close relationship between formant frequency spacing, vocal tract length and overall body size. Accordingly, intriguing morphological adaptations to elongate the vocal tract in order to lower formants occur in several species, with the size exaggeration hypothesis being proposed to justify most of these observations. While the elephant trunk is strongly implicated to account for the low formants of elephant rumbles, it is unknown whether elephants emit these vocalizations exclusively through the trunk, or whether the mouth is also involved in rumble production. In this study we used a sound visualization method (an acoustic camera) to record rumbles of five captive African elephants during spatial separation and subsequent bonding situations. Our results showed that the female elephants in our analysis produced two distinct types of rumble vocalizations based on vocal path differences: a nasally- and an orally-emitted rumble. Interestingly, nasal rumbles predominated during contact calling, whereas oral rumbles were mainly produced in bonding situations. In addition, nasal and oral rumbles varied considerably in their acoustic structure. In particular, the values of the first two formants reflected the estimated lengths of the vocal paths, corresponding to a vocal tract length of around 2 meters for nasal, and around 0.7 meters for oral rumbles. These results suggest that African elephants may be switching vocal paths to actively vary vocal tract length (with considerable variation in formants) according to context, and call for further research investigating the function of formant modulation in elephant vocalizations. Furthermore, by confirming the use of the elephant trunk in long distance rumble production, our findings provide an explanation for the extremely low formants in these calls, and may also indicate that formant lowering functions to increase call propagation distances in this species'

    The evolution of acoustic size exaggeration in terrestrial mammals

    Get PDF
    Recent studies have revealed that some mammals possess adaptations that enable them to produce vocal signals with much lower fundamental frequency (F0) and formant frequency spacing (ΔF) than expected for their size. Although these adaptations are assumed to reflect selection pressures for males to lower frequency components and exaggerate body size in reproductive contexts, this hypothesis has not been tested across a broad range of species. Here we show that male terrestrial mammals produce vocal signals with lower ΔF (but not F0) than expected for their size in mating systems with greater sexual size dimorphism. We also reveal that males produce calls with higher than expected F0 and ΔF in species with increased sperm competition. This investigation confirms that sexual selection favours the use of ΔF as an acoustic size exaggerator, and supports the notion of an evolutionary trade-off between pre-copulatory signalling displays and sperm production

    Evolutionary Developmental Biology and Human Language Evolution: Constraints on Adaptation

    Get PDF

    Hyoid apparatus and pharynx in the lion (Panthera leo), jaguar (Panthera onca), tiger (Panthera tigris), cheetah (Acinonyx jubatus) and domestic cat (Felis silvestris f. catus)

    No full text
    Structures of the hyoid apparatus, the pharynx and their topographical positions in the lion, tiger, jaguar, cheetah and domestic cat were described in order to determine morphological differences between species or subfamilies of the Felidae. In the lion, tiger and jaguar (species of the subfamily Pantherinae) the Epihyoideum is an elastic ligament lying between the lateral pharyngeal muscles and the Musculus (M.) thyroglossus rather than a bony element like in the cheetah or the domestic cat. The M. thyroglossus was only present in the species of the Pantherinae studied. In the lion and the jaguar the Thyrohyoideum and the thyroid cartilage are connected by an elastic ligament, whereas in the tiger there is a synovial articulation. In adult individuals of the lion, tiger and jaguar the ventral end of the tympanohyal cartilage is rotated and therefore the ventral end of the attached Stylohyoideum lies caudal to the Tympanohyoideum and the cranial base. In newborn jaguars the Apparatus hyoideus shows a similar topographical position as in adult cheetahs or domestic cats. In adult Pantherinae, the Basihyoideum and the attached larynx occupy a descended position: they are situated near the cranial thoracic aperture, the pharyngeal wall and the soft palate are caudally elongated accordingly. In the Pantherinae examined the caudal end of the soft palate lies dorsal to the glottis. Differences in these morphological features between the subfamilies of the Felidae have an influence on specific structural characters of their vocalizations

    The structure of the cushions in the feet of African elephants (Loxodonta africana)

    No full text
    The uniquely designed limbs of the African elephant, Loxodonta africana, support the weight of the largest terrestrial animal. Besides other morphological peculiarities, the feet are equipped with large subcutaneous cushions which play an important role in distributing forces during weight bearing and in storing or absorbing mechanical forces. Although the cushions have been discussed in the literature and captive elephants, in particular, are frequently affected by foot disorders, precise morphological data are sparse. The cushions in the feet of African elephants were examined by means of standard anatomical and histological techniques, computed tomography (CT) and magnetic resonance imaging (MRI). In both the forelimb and the hindlimb a 6th ray, the prepollex or prehallux, is present. These cartilaginous rods support the metacarpal or metatarsal compartment of the cushions. None of the rays touches the ground directly. The cushions consist of sheets or strands of fibrous connective tissue forming larger metacarpal/metatarsal and digital compartments and smaller chambers which were filled with adipose tissue. The compartments are situated between tarsal, metatarsal, metacarpal bones, proximal phalanges or other structures of the locomotor apparatus covering the bones palmarly/plantarly and the thick sole skin. Within the cushions, collagen, reticulin and elastic fibres are found. In the main parts, vascular supply is good and numerous nerves course within the entire cushion. Vater–Pacinian corpuscles are embedded within the collagenous tissue of the cushions and within the dermis. Meissner corpuscles are found in the dermal papillae of the foot skin. The micromorphology of elephant feet cushions resembles that of digital cushions in cattle or of the foot pads in humans but not that of digital cushions in horses. Besides their important mechanical properties, foot cushions in elephants seem to be very sensitive structures

    Vocal production by terrestrial mammals: source, filter and function

    No full text
    In little over two decades, researchers have moved from a situation in which most studies of terrestrial mammal vocal signals focused on conspicuous characteristics, such as their rate of occurrence, and where the spectral acoustic variation was largely ignored or poorly quantified, to a field of study in which there is a much better understanding of the nature and function of the acoustic parameters that compose vocalizations. The source-filter theory, originally developed for the analysis of speech signals, has played a large role in this progress. Understanding how the acoustic variability of vocalizations is grounded within their mechanism of production has enabled researchers to predict the type of information that vocal signals are likely to contain, and to predict their co-variation with morphological and/or physiological attributes of callers. Moreover, the powerful theoretical platform derived from the source-filter theory not just conceptually supports the formulation of multilevel hypotheses, but also paves the way to develop the corresponding methodologies needed to address them. Although the full range of acoustic diversity of terrestrial mammal signals has yet to be explored, this chapter draws together a wealth of research conducted over the last two decades, and describes how source- and filter-related acoustic components encode functionally relevant information in the vocal communication systems of terrestrial mammal and how selection pressures have led to the evolution of anatomical innovations that enable animals to produce exaggerated vocal traits
    corecore