56 research outputs found

    Enhancing Innovation Through Biologically Inspired Design

    Get PDF
    Mixing upper level undergraduates majoring in engineering with those majoring in biology, we have devised a course on biologically-inspired design (BID) that provides practical training in methods and techniques that facilitate the identification and translation of biological principles into solutions for human challenges. The challenges of interdisciplinary courses generally, and the specific challenges of fostering exchange among biologists and engineers lead us to define these learning goals: (1) basic knowledge of successful examples of BID, (2) interdisciplinary communication skills, (3) knowledge about domains outside of their core training, (4) a uniquely interdisciplinary design process, and (5) how to apply existing technical knowledge to a new discipline. We developed the following course components to meet the key learning objectives: BID Lectures; Design Lectures; Found object exercises; Quantitative assessments; Analogy exercises; Research assignments; Interdisciplinary Collaboration, Mentorship; Idea Journals and Reflections. We will provide an extensive description of these elements, which we have chosen to incorporate based on our own experience with interdisciplinary communication, as well as findings from cognitive science regarding how students actually learn. This 15 week course is organized using assignments of increasing complexity that allow students to learn and apply essential skills of BID methodology and practice. Early exercises, which combine lectures, group discussions and individual assignments, have these objectives: 1) allow students to develop the necessary inter-disciplinary communication and research skills to facilitate their design project work; 2) expose students to ideation and design skills that will encourage them to work outside of their comfort zone; 3) practice the analogical reasoning skills that facilitate the successful search for and application of relevant biological concepts. This initial portion of the course stresses that BID occurs at the early phase of a design process and that identifying solutions from the biological domain requires that students have a sufficient breakdown of their problem combined with sufficient biological knowledge to suggest appropriate mappings between problem and solution. Two primary barriers are a lack of appreciation for how the evolutionary “design” process differs from human design, and the use of different terminology for describing similar processes in biology vs. engineering. We describe some teaching practices and activities that allow students to overcome these difficulties. The course culminates in a group project, which is a detailed conceptual design including a preliminary analysis of expected performance, value, and feasibility. A unique feature of the course is that it represents the efforts of not only biologists and engineers, but also contributions from cognitive scientists engaged in understanding human cognition and creativity. Our course strategy has been deeply influenced by findings in that field. We have studied the activity of classroom participants for the last three years, examining the processes they use, and intermediate and final design representations. Analysis of this has yielded a number of observations about the cognitive process of biologically inspired design that may provide insights regarding how to enhance BID education, as well as provide useful insight for professionals in the design field. Key words: biologically-inspired design (BID); interdisciplinary communicatio

    Acquisition of a research and teaching salt water flume at Priest Landing, GA.

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    Peer J Consumption Data

    Get PDF
    These data were used for a study that will be reported on in a forthcoming Peer J article. The data files were updated on September 25, 2015.This work is licensed under a Creative Commons Attribution 4.0 International License.The data file contains the results of predation experiments on oyster spat by mud crabs in the presence of chemical cues produced by blue crabs fed differing amounts of mud crabs and placed different distances away. The treatment variables and levels consist of: Distance (0.25m, 0.5m, 1m, 1.5m, or 2m); Diet (High [H], Low [L], or Control [C]); and, Time (24, 48 hours). Date of experiment also is included. The measurement variables consist of Total Number Eaten, and Proportion Eaten Outside Refuge

    Impacts of Global Warming and Elevated CO2 on Sensory Behavior in Predator-Prey Interactions: A Review and Synthesis

    Get PDF
    Ecosystems are shaped by complex interactions between species and their environment. However, humans are rapidly changing the environment through increased carbon dioxide (CO2) emissions, creating global warming and elevated CO2 levels that affect ecological communities through multiple processes. Understanding community responses to climate change requires examining the consequences of changing behavioral interactions between species, such as those affecting predator and prey. Understanding the underlying sensory process that govern these interactions and how they may be affected by climate change provides a predictive framework, but many studies examine behavioral outcomes only. This review summarizes the current knowledge of global warming and elevated CO2 impacts on predator-prey interactions with respect to the relevant aspects of sensory ecology, and we discuss the potential consequences of these effects. Our specific questions concern how climate change affects the ability of predators and prey to collect information and how this affects predator-prey interactions. We develop a framework for understanding how warming and elevated CO2 can alter behavioral interactions by examining how the processes (steps) of sensory cue (or signal) production, transmission and reception may change. This includes both direct effects on cue production and reception resulting from changes in organismal physiology, but also effects on cue transmission resulting from modulation of the physical environment via physical and biotic changes. We suggest that some modalities may be particularly prone to disruption, and that aquatic environments may suffer more serious disruptions as a result of elevated CO2 and warming that collectively affect all steps of the signaling process. Temperature by itself may primarily operate on aspects of cue generation and transmission, implying that sensory-mediated disruptions in terrestrial environments may be less severe. However, significant biases in the literature in terms of modalities (chemosensation), taxa (fish), and stressors (elevated CO2) examined currently prevents accurate generalizations. Significant issues such as multimodal compensation and altered transmission or other environmental effects remain largely unaddressed. Future studies should strive to fill these knowledge gaps in order to better understand and predict shifts in predator-prey interactions in a changing climate

    The hydrodynamics of benthic predation

    Get PDF
    Issued as final reportNational Science Foundation (U.S.

    The fluid dynamical context of chemosensory behavior

    No full text
    Volume: 198Start Page: 188End Page: 20

    The smell of success: the amount of prey consumed by predators determines the strength and range of cascading non-consumptive effects

    No full text
    We examined whether chemically mediated risk perception by prey and the effects of changes in prey behavior on basal resources vary as a function of the amount of prey biomass consumed by the predator. We studied these issues using a tritrophic system composed of blue crabs, Callinectes sapidus (top predator), mud crabs Panopeus herbstii (intermediate prey), and oysters Crassostrea virginica (basal resource). Working in a well characterized field environment where experiments preserve natural patterns of water flow, we found that biomass consumed by a predator determines the range, intensity and nature of prey aversive responses. Predators that consume large amounts of prey flesh more strongly diminish consumption of basal resources by prey and exert effects over a larger range (in space and time) compared to predators that have eaten less. Less well-fed predators produce weaker effects, with the consequence that behaviorally mediated cascades preferentially occur in refuge habitats. Well-fed predators affected prey behavior and increased basal resources up to distances of 1–1.5 m, whereas predators fed restricted diet evoked changes in prey only when they were extremely close, typically 50 cm or less. Thus, consumptive and non-consumptive effects may be coupled; predators that have a greater degree of predatory success will affect prey traits more strongly and non-consumptive and consumptive effects may fluctuate in tandem, with some lag. Moreover, differences among predators in their degree of prey capture will create spatial and temporal variance in risk cue availability in the absence of underlying environmental effects

    Effects of Odor Flux and Pulse Rate on Chemosensory Tracking in Turbulent Odor Plumes by the Blue Crab, Callinectes sapidus

    No full text
    Volume: 207Start Page: 44End Page: 5
    • …
    corecore