17,882 research outputs found

    Two-pion light-cone distribution amplitudes from the instanton vacuum

    Get PDF
    We calculate the two-pion light-cone distribution amplitudes in the effective low-energy theory based on the instanton vacuum. These generalized distribution amplitudes describe the soft (non-perturbative) part of the process γ∗γ→ππ\gamma^*\gamma \to \pi\pi in the region where the c.m. energy is much smaller than the photon virtuality. They can also be used in the analysis of exclusive processes such as γ∗p→p+2π,3π\gamma^* p \to p + 2\pi, 3\pi etc.Comment: 13 pages, LaTeX, 4 figures included using eps

    Nuclear physics with a medium-energy Electron-Ion Collider

    Full text link
    A polarized ep/eA collider (Electron-Ion Collider, or EIC) with variable center-of-mass energy sqrt(s) ~ 20-70 GeV and a luminosity ~ 10^{34} cm^{-2} s^{-1} would be uniquely suited to address several outstanding questions of Quantum Chromodynamics (QCD) and the microscopic structure of hadrons and nuclei: (i) the three-dimensional structure of the nucleon in QCD (sea quark and gluon spatial distributions, orbital motion, polarization, correlations); (ii) the fundamental color fields in nuclei (nuclear parton densities, shadowing, coherence effects, color transparency); (iii) the conversion of color charge to hadrons (fragmentation, parton propagation through matter, in-medium jets). We briefly review the conceptual aspects of these questions and the measurements that would address them, emphasizing the qualitatively new information that could be obtained with the collider. Such a medium-energy EIC could be realized at Jefferson Lab after the 12 GeV Upgrade (MEIC), or at Brookhaven National Lab as the low-energy stage of eRHIC.Comment: 9 pages, 5 figures. Mini-review compiled in preparation for the MEIC Conceptual Design Report, Jefferson Lab (2011

    Flavor asymmetry of polarized antiquark distributions and semi-inclusive DIS

    Get PDF
    The 1/Nc1/N_c-expansion of QCD suggests large flavor asymmetries of the polarized antiquark distributions in the nucleon. This is confirmed by model calculations in the large-NcN_c limit (chiral quark-soliton model), which give sizable results for Δuˉ(x)−Δdˉ(x)\Delta\bar u (x) - \Delta\bar d (x) and Δuˉ(x)+Δdˉ(x)−2Δsˉ(x)\Delta\bar u (x) + \Delta\bar d (x) - 2 \Delta \bar s (x). We compute the contributions of these flavor asymmetries to the spin asymmetries in hadron production in semi-inclusive deep-inelastic scattering. We show that the large flavor asymmetries predicted by the chiral quark-soliton model are consistent with the recent HERMES data for spin asymmetries in charged hadron production.Comment: 21 pages, LaTeX2e, 9 eps figures include

    Transverse target spin asymmetry in inclusive DIS with two-photon exchange

    Full text link
    We study the transverse target spin dependence of the cross section for inclusive electron-nucleon scattering with unpolarized beam. Such dependence is absent in the one-photon exchange approximation (Christ-Lee theorem) and arises only in higher orders of the QED expansion, from the interference of one-photon and absorptive two-photon exchange amplitudes as well as from real photon emission (bremsstrahlung). We demonstrate that the transverse spin-dependent two-photon exchange cross section is free of QED infrared and collinear divergences. We argue that in DIS kinematics the transverse spin dependence should be governed by a "parton-like" mechanism in which the two-photon exchange couples mainly to a single quark. We calculate the normal spin asymmetry in an approximation where the dominant contribution arises from quark helicity flip due to interactions with non-perturbative vacuum fields (constituent quark picture) and is proportional to the quark transversity distribution in the nucleon. Such helicity-flip processes are not significantly Sudakov-suppressed if the infrared scale for gluon emission in the photon-quark subprocess is of the order of the chiral symmetry breaking scale, mu_chiral^2 >> Lambda_QCD^2. We estimate the asymmetry in the kinematics of the planned Jefferson Lab Hall A experiment to be of the order 10^{-4}, with different sign for proton and neutron. We also comment on the spin dependence in the limit of soft high-energy scattering.Comment: 22 pages, 14 figures; uses revtex

    Spatial Resonator Solitons

    Full text link
    Spatial solitons can exist in various kinds of nonlinear optical resonators with and without amplification. In the past years different types of these localized structures such as vortices, bright, dark solitons and phase solitons have been experimentally shown to exist. Many links appear to exist to fields different from optics, such as fluids, phase transitions or particle physics. These spatial resonator solitons are bistable and due to their mobility suggest schemes of information processing not possible with the fixed bistable elements forming the basic ingredient of traditional electronic processing. The recent demonstration of existence and manipulation of spatial solitons in emiconductor microresonators represents a step in the direction of such optical parallel processing applications. We review pattern formation and solitons in a general context, show some proof of principle soliton experiments on slow systems, and describe in more detail the experiments on semiconductor resonator solitons which are aimed at applications.Comment: 15 pages, 32 figure

    Electron-deuteron DIS with spectator tagging at EIC: Development of theoretical framework

    Get PDF
    An Electron-Ion Collider (EIC) would enable next-generation measurements of deep-inelastic scattering (DIS) on the deuteron with detection of a forward-moving nucleon (p, n) and measurement of its recoil momentum ("spectator tagging"). Such experiments offer full control of the nuclear configuration during the high-energy process and can be used for precision studies of the neutron's partonic structure and its spin dependence, nuclear modifications of partonic structure, and nuclear shadowing at small x. We review the theoretical description of spectator tagging at EIC energies (light-front nuclear structure, on-shell extrapolation in the recoil nucleon momentum, final-state interactions, diffractive effects at small x) and report about on-going developments.Comment: 7 pages, 3 figures. Proceedings of 6th International Conference on Physics Opportunities at an Electron-Ion Collider (POETIC6), Palaiseau, France, 7-11 September 201
    • …
    corecore