38,919 research outputs found

    Universal Power-law Decay in Hamiltonian Systems?

    Full text link
    The understanding of the asymptotic decay of correlations and of the distribution of Poincar\'e recurrence times P(t)P(t) has been a major challenge in the field of Hamiltonian chaos for more than two decades. In a recent Letter, Chirikov and Shepelyansky claimed the universal decay P(t)t3P(t) \sim t^{-3} for Hamiltonian systems. Their reasoning is based on renormalization arguments and numerical findings for the sticking of chaotic trajectories near a critical golden torus in the standard map. We performed extensive numerics and find clear deviations from the predicted asymptotic exponent of the decay of P(t)P(t). We thereby demonstrate that even in the supposedly simple case, when a critical golden torus is present, the fundamental question of asymptotic statistics in Hamiltonian systems remains unsolved.Comment: Phys. Rev. Lett., in pres

    Gambling Behaviors of Former Athletes: The Delayed Competitive Effect

    Full text link
    Gambling behaviors in current athletes, former athletes and non-athletes were examined. Gambling tendencies were determined from participants\u27 responses on the South Oaks Gambling Screen (SOGS). A delayed competitive effect among athletes that might surface in the form of pathological gambling was investigated. To test this novel theory, participants were divided into three groups: athletes who are currently playing sports, former athletes who used to play competitive sports and non-athletes who have never participated in competitive sporting events. A 2 x 3 independent groups AN OVA was utilized comparing SOGS scores across gender and athletic status. The mean score for former athletes on the SOGS was significantly higher than for both current athletes and non-athletes as was the frequency of those classified as probable pathological gamblers suggesting the possibility that a delayed competitive effect might exist among former athletes. Additionally, a higher percentage of former athletes were involved in sports gambling

    On integrability of the differential constraints arising from the singularity analysis

    Full text link
    Integrability of the differential constraints arising from the singularity analysis of two (1+1)-dimensional second-order evolution equations is studied. Two nonlinear ordinary differential equations are obtained in this way, which are integrable by quadratures in spite of very complicated branching of their solutions.Comment: arxiv version is already offcia

    Detailed AGB evolutionary models and near infrared colours of intermediate-age stellar populations: Tests on star clusters

    Full text link
    We investigate the influence of Asymptotic Giant Branch stars on integrated colours of star clusters of ages between ~100 Myr and a few gigayears, and composition typical for the Magellanic Clouds. We use state-of-the-art stellar evolution models that cover the full thermal pulse phase, and take into account the influence of dusty envelopes on the emerging spectra. We present an alternative approach to the usual isochrone method, and compute integrated fluxes and colours using a Monte Carlo technique that enables us to take into account statistical fluctuations due to the typical small number of cluster stars. We demonstrate how the statistical variations in the number of Asymptotic Giant Branch stars and the temperature and luminosity variations during thermal pulses fundamentally limit the accuracy of the comparison (and calibration, for population synthesis models that require a calibration of the Asymptotic Giant Branch contribution to the total luminosity) with star cluster integrated photometries. When compared to observed integrated colours of individual and stacked clusters in the Magellanic Clouds, our predictions match well most of the observations, when statistical fluctuations are taken into account, although there are discrepancies in narrow age ranges with some (but not all) set of observations.Comment: 12 pages, 14 figures, accepted for publication in A&

    A performance comparison of fullband and different subband adaptive equalisers

    Get PDF
    We present two different fractionally spaced (FS) equalisers based on subband methods, with the aim of reducing the computational complexity and increasing the convergence rate of a standard fullband FS equaliser. This is achieved by operating in decimated subbands; at a considerably lower update rate and by exploiting the prewhitening effect that a filter bank has on the considerable spectral dynamics of a signal received through a severely distorting channel. The two presented subband structures differ in their level of realising the feedforward and feedback part of the equaliser in the subband domain, with distinct impacts on the updating. Simulation results pinpoint the faster convergence at lower cost for the proposed subband equalisers

    Magnetic Miniband Structure and Quantum Oscillations in Lateral Semiconductor Superlattices

    Full text link
    We present fully quantum-mechanical magnetotransport calculations for short-period lateral superlattices with one-dimensional electrostatic modulation. A non-perturbative treatment of both magnetic field and modulation potential proves to be necessary to reproduce novel quantum oscillations in the magnetoresistance found in recent experiments in the resistance component parallel to the modulation potential. In addition, we predict oscillations of opposite phase in the component perpendicular to the modulation not yet observed experimentally. We show that the new oscillations originate from the magnetic miniband structure in the regime of overlapping minibands.Comment: 6 pages with 4 figure

    The Role of Dust in Models of Population Synthesis

    Full text link
    We have employed state-of-the-art evolutionary models of low and intermediate-mass AGB stars, and included the effect of circumstellar dust shells on the spectral energy distribution (SED) of AGB stars, to revise the Padua library of isochrones (Bertelli et al. 1994). The major revision involves the thermally pulsing AGB phase, that is now taken from fully evolutionary calculations by Weiss & Ferguson (2009). Two libraries of about 600 AGB dust-enshrouded SEDs each have also been calculated, one for oxygen-rich M-stars and one for carbon-rich C-stars. Each library accounts for different values of input parameters like the optical depth {\tau}, dust composition, and temperature of the inner boundary of the dust shell. These libraries of dusty AGB spectra have been implemented into a large composite library of theoretical stellar spectra, to cover all regions of the Hertzsprung-Russell Diagram (HRD) crossed by the isochrones. With the aid of the above isochrones and libraries of stellar SEDs, we have calculated the spectro-photometric properties (SEDs, magnitudes, and colours) of single-generation stellar populations (SSPs) for six metallicities, more than fifty ages (from 3 Myr to 15 Gyr), and nine choices of the Initial Mass Function. The new isochrones and SSPs have been compared to the colour-magnitude diagrams (CMDs) of field populations in the LMC and SMC, with particular emphasis on AGB stars, and the integrated colours of star clusters in the same galaxies, using data from the SAGE (Surveying the Agents of Galaxy Evolution) catalogues. We have also examined the integrated colours of a small sample of star clusters located in the outskirts of M31. The agreement between theory and observations is generally good. In particular, the new SSPs reproduce the red tails of the AGB star distribution in the CMDs of field stars in the Magellanic Clouds.Comment: Accepted for publication in MNRA
    corecore