2,348 research outputs found

    Equivariant Symmetries for Inertial Navigation Systems

    Full text link
    This paper investigates the problem of inertial navigation system (INS) filter design through the lens of symmetry. The extended Kalman filter (EKF) and its variants, have been the staple of INS filtering for 50 years; however, recent advances in inertial navigation systems have exploited matrix Lie group structure to design stochastic filters and state observers that have been shown to display superior performance compared to classical solutions. In this work we consider the case where a vehicle has an inertial measurement unit (IMU) and a global navigation satellite system (GNSS) receiver. We show that all the modern variants of the EKF for these sensors can be interpreted as the recently proposed Equivariant Filter (EqF) design methodology applied to different choices of symmetry group for the INS problem. This leads us to propose two new symmetries for the INS problem that have not been considered in the prior literature, and provide a discussion of the relative strengths and weaknesses of all the different algorithms. We believe the collection of symmetries that we present here capture all the sensible choices of symmetry for this problem and sensor suite, and that the analysis provided is indicative of the relative real-world performance potential of the different algorithms.Comment: Submitted to Automatic

    Niche inheritance: a cooperative pathway to enhance cancer cell fitness though ecosystem engineering

    Full text link
    Cancer cells can be described as an invasive species that is able to establish itself in a new environment. The concept of niche construction can be utilized to describe the process by which cancer cells terraform their environment, thereby engineering an ecosystem that promotes the genetic fitness of the species. Ecological dispersion theory can then be utilized to describe and model the steps and barriers involved in a successful diaspora as the cancer cells leave the original host organ and migrate to new host organs to successfully establish a new metastatic community. These ecological concepts can be further utilized to define new diagnostic and therapeutic areas for lethal cancers.Comment: 8 pages, 1 Table, 4 Figure

    Missense-depleted regions in population exomes implicate ras superfamily nucleotide-binding protein alteration in patients with brain malformation.

    Get PDF
    Genomic sequence interpretation can miss clinically relevant missense variants for several reasons. Rare missense variants are numerous in the exome and difficult to prioritise. Affected genes may also not have existing disease association. To improve variant prioritisation, we leverage population exome data to identify intragenic missense-depleted regions (MDRs) genome-wide that may be important in disease. We then use missense depletion analyses to help prioritise undiagnosed disease exome variants. We demonstrate application of this strategy to identify a novel gene association for human brain malformation. We identified de novo missense variants that affect the GDP/GTP-binding site of ARF1 in three unrelated patients. Corresponding functional analysis suggests ARF1 GDP/GTP-activation is affected by the specific missense mutations associated with heterotopia. These findings expand the genetic pathway underpinning neurologic disease that classically includes FLNA. ARF1 along with ARFGEF2 add further evidence implicating ARF/GEFs in the brain. Using functional ontology, top MDR-containing genes were highly enriched for nucleotide-binding function, suggesting these may be candidates for human disease. Routine consideration of MDR in the interpretation of exome data for rare diseases may help identify strong genetic factors for many severe conditions, infertility/reduction in reproductive capability, and embryonic conditions contributing to preterm loss

    Toward a Surrogate Marker of Malaria Exposure: Modeling Longitudinal Antibody Measurements under Outbreak Conditions

    Get PDF
    Background: Biomarkers of exposure to Plasmodium falciparum would be a useful tool for the assessment of malaria burden and analysis of intervention and epidemiological studies. Antibodies to pre-erythrocytic antigens represent potential surrogates of exposure. Methods and Findings: In an outbreak cohort of U.S. Marines deployed to Liberia, we modeled pre- and post-deployment IgG against P. falciparum sporozoites by immunofluorescence antibody test, and both IgG and IgM against the P. falciparum circumsporozoite protein by enzyme-linked immunosorbant assay. Modeling seroconversion thresholds by a fixed ratio, linear regression or nonlinear regression produced sensitivity for identification of exposed U.S. Marines between 58-70% and specificities between 87-97%, compared with malaria-naĂŻve U.S. volunteers. Exposure was predicted in 30-45% of the cohort. Conclusion: Each of the three models tested has merits in different studies, but further development and validation in endemic populations is required. Overall, these models provide support for an antibody-based surrogate marker of exposure to malaria

    Diagnosis and management of subcutaneous implantable cardioverter‐defibrillator infections based on process mapping

    Get PDF
    Background: Infection is a well‐recognized complication of cardiovascular implantable electronic device (CIED) implantation, including the more recently available subcutaneous implantable cardioverter‐defibrillator (S‐ICD). Although the AHA/ACC/HRS guidelines include recommendations for S‐ICD use, currently there are no clinical trial data that address the diagnosis and management of S‐ICD infections. Therefore, an expert panel was convened to develop consensus on these topics. / Methods: A process mapping methodology was used to achieve a primary goal – the development of consensus on the diagnosis and management of S‐ICD infections. Two face‐to‐face meetings of panel experts were conducted to recommend useful information to clinicians in individual patient management of S‐ICD infections. / Results: Panel consensus of a stepwise approach in the diagnosis and management was developed to provide guidance in individual patient management. / Conclusion: Achieving expert panel consensus by process mapping methodology in S‐ICD infection diagnosis and management was attainable, and the results should be helpful in individual patient management

    The 13

    Full text link
    At nuclear fusion reactors, CVD diamond detectors are considered an advantageous solution for neutron flux monitoring. For such applications the knowledge of the cross section of neutron-induced nuclear reactions on natural carbon are of high importance. Especially the (n,α0) reactions, yielding the highest energy reaction products, are of relevance as they can be clearly distinguished in the spectrum. The 13C(n,α0)10Be cross section was measured relative to 12C(n,α0)9Be at the Van de Graaff facility of EC-JRC Geel, Belgium, at 14.3 MeV and 17.0 MeV neutron energies. The measurement was performed with an sCVD (single-crystal Chemical Vapor Deposition) diamond detector, where the detector material acted simultaneously as sample and as sensor. A novel data analysis technique, based on pulse-shape discrimination, allowed an efficient reduction of background events. The results of the measurement are presented and compared to previously published values for this cross-section

    Prototyping of automotive components with variable width and depth

    Full text link
    Roll forming enables the manufacturing of longitudinal components from materials that combine high strength with limited formability and is increasingly used in the automotive industry for the manufacture of structural and crash components. An extension of conventional roll forming is the Flexible Roll Forming (FRF) process where the rolls are no longer fixed in space but are free to move which enables the forming of components with variable cross section over the length of the part. Even though FRF components have high weight saving potential the technology has found only limited application in the automotive industry. A new flexible forming facility has recently been developed that enables proof of concept studies and the production of FRF prototypes before a full FRF line is built; this may lead to a wider uptake of the FRF technology in the automotive industry. In this process, the pre-cut blank is placed between two clamps and the whole set up moves back and forth; a forming roll that is mounted on a servo-controlled platform with six degrees of freedom forms the pre-cut blank to the desired shape. In this study an initial forming concept for the flexible roll forming of an automotive component with variable height is developed using COPRA® FEA RF. This is followed by performing experimental prototyping studies on the new concept forming facility. Using the optical strain measurement system Autogrid Compact, material deformation, part shape and wrinkling severity are analysed for some forming passes and compared with the numerical results. The results show that the numerical model gives a good representation of material behaviour and that with increasing forming severity wrinkling issues need to be overcome in the process

    Device-related infection in de novo transvenous implantable cardioverter-defibrillator Medicare patients

    Get PDF
    BACKGROUND: Cardiac device infection is a serious complication of implantable cardioverter-defibrillator (ICD) placement and requires complete device removal with accompanying antimicrobial therapy for durable cure. Recent guidelines have highlighted the need to better identify patients at high risk of infection to assist in device selection. OBJECTIVE: To estimate the prevalence of infection in de novo transvenous (TV) ICD implants and assess factors associated with infection risk in a Medicare population. METHODS: A retrospective cohort study was conducted using 100% Medicare administrative and claims data to identify patients who underwent de novo TV-ICD implantation (7/2016-12/2017). Infection within 720 days of implantation was identified using ICD-10 codes. Baseline factors associated with infection were identified by univariable logistic regression analysis of all variables of interest, including conditions in Charlson and Elixhauser comorbidity indices, followed by stepwise selection criteria with a p≀0.25 for inclusion in a multivariable model and a backwards, stepwise elimination process with p≀0.1 to remain in the model. A time-to-event analysis was also conducted. RESULTS: Among 26,742 patients with de novo TV-ICD, 519 (1.9%) developed an infection within 720 days post-implant. While more than half (54%) of infections occurred during the first 90 days, 16% of infections occurred after 365 days. Multivariable analysis revealed several significant predictors of infection: age <70 years, renal disease with dialysis, and complicated diabetes mellitus. CONCLUSION: The rate of de novo TV-ICD infection was 1.9% and identified risk factors associated with infection may be useful in device selection

    Translating three states of knowledge--discovery, invention, and innovation

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knowledge Translation (KT) has historically focused on the proper use of knowledge in healthcare delivery. A knowledge base has been created through empirical research and resides in scholarly literature. Some knowledge is amenable to direct application by stakeholders who are engaged during or after the research process, as shown by the Knowledge to Action (KTA) model. Other knowledge requires multiple transformations before achieving utility for end users. For example, conceptual knowledge generated through science or engineering may become embodied as a technology-based invention through development methods. The invention may then be integrated within an innovative device or service through production methods. To what extent is KT relevant to these transformations? How might the KTA model accommodate these additional development and production activities while preserving the KT concepts?</p> <p>Discussion</p> <p>Stakeholders adopt and use knowledge that has perceived utility, such as a solution to a problem. Achieving a technology-based solution involves three methods that generate knowledge in three states, analogous to the three classic states of matter. Research activity generates discoveries that are intangible and highly malleable like a gas; development activity transforms discoveries into inventions that are moderately tangible yet still malleable like a liquid; and production activity transforms inventions into innovations that are tangible and immutable like a solid. The paper demonstrates how the KTA model can accommodate all three types of activity and address all three states of knowledge. Linking the three activities in one model also illustrates the importance of engaging the relevant stakeholders prior to initiating any knowledge-related activities.</p> <p>Summary</p> <p>Science and engineering focused on technology-based devices or services change the state of knowledge through three successive activities. Achieving knowledge implementation requires methods that accommodate these three activities and knowledge states. Accomplishing beneficial societal impacts from technology-based knowledge involves the successful progression through all three activities, and the effective communication of each successive knowledge state to the relevant stakeholders. The KTA model appears suitable for structuring and linking these processes.</p
    • 

    corecore