40,150 research outputs found

    Accurate nucleon electromagnetic form factors from dispersively improved chiral effective field theory

    Full text link
    We present a theoretical parametrization of the nucleon electromagnetic form factors (FFs) based on a combination of chiral effective field theory and dispersion analysis. The isovector spectral functions on the two-pion cut are computed using elastic unitarity, chiral pion-nucleon amplitudes, and timelike pion FF data. Higher-mass isovector and isoscalar t-channel states are described by effective poles, whose strength is fixed by sum rules (charges, radii). Excellent agreement with the spacelike proton and neutron FF data is achieved up to Q^2 \sim 1 GeV^2. Our parametrization provides proper analyticity and theoretical uncertainty estimates and can be used for low-Q^2 FF studies and proton radius extraction.Comment: 5 pages, 3 figures, 2 table

    Polarized antiquark flavor asymmetry: Pauli blocking vs. the pion cloud

    Full text link
    The flavor asymmetry of the unpolarized antiquark distributions in the proton, dbar(x) - ubar(x) > 0, can qualitatively be explained either by Pauli blocking by the valence quarks, or as an effect of the pion cloud of the nucleon. In contrast, predictions for the polarized asymmetry Delta_ubar(x) - Delta_dbar(x) based on rho meson contributions disagree even in sign with the Pauli blocking picture. We show that in the meson cloud picture a large positive Delta_ubar(x) - Delta_dbar(x) is obtained from pi-N - sigma-N interference-type contributions, as suggested by chiral symmetry. This effect restores the equivalence of the 'quark' and 'meson' descriptions also in the polarized case.Comment: 4 pages, revtex, 3 eps figure

    Optical Properties of Quantum-Dot-Doped Liquid Scintillators

    Full text link
    Semiconductor nanoparticles (quantum dots) were studied in the context of liquid scintillator development for upcoming neutrino experiments. The unique optical and chemical properties of quantum dots are particularly promising for the use in neutrinoless double beta decay experiments. Liquid scintillators for large scale neutrino detectors have to meet specific requirements which are reviewed, highlighting the peculiarities of quantum-dot-doping. In this paper, we report results on laboratory-scale measurements of the attenuation length and the fluorescence properties of three commercial quantum dot samples. The results include absorbance and emission stability measurements, improvement in transparency due to filtering of the quantum dot samples, precipitation tests to isolate the quantum dots from solution and energy transfer studies with quantum dots and the fluorophore PPO.Comment: version 2, minor text update

    Weak Localization and Transport Gap in Graphene Antidot Lattices

    Get PDF
    We fabricated and measured antidot lattices in single layer graphene with lattice periods down to 90 nm. In large-period lattices, a well-defined quantum Hall effect is observed. Going to smaller antidot spacings the quantum Hall effect gradually disappears, following a geometric size effect. Lattices with narrow constrictions between the antidots behave as networks of nanoribbons, showing a high-resistance state and a transport gap of a few mV around the Dirac point. We observe pronounced weak localization in the magnetoresistance, indicating strong intervalley scattering at the antidot edges. The area of phase-coherent paths is bounded by the unit cell size at low temperatures, so each unit cell of the lattice acts as a ballistic cavity.Comment: some revisions, to appear in New Journal of Physics, Special Issue Graphen

    Ground state energy of a homogeneous Bose-Einstein condensate beyond Bogoliubov

    Full text link
    The standard calculations of the ground-state energy of a homogeneous Bose gas rely on approximations which are physically reasonable but difficult to control. Lieb and Yngvason [Phys. Rev. Lett. 80, 2504 (1998)] have proved rigorously that the commonly accepted leading order term of the ground state energy is correct in the zero-density-limit. Here, strong indications are given that also the next to leading term is correct. It is shown that the first terms obtained in a perturbative treatment provide contributions which are lost in the Bogoliubov approach.Comment: 6 pages, accepted for publication in Europhys. Lett. http://www.epletters.ch

    Automated NLO QCD Corrections with WHIZARD

    Full text link
    We briefly discuss the current status of NLO QCD automation in the Monte Carlo event generator WHIZARD. The functionality is presented for the explicit study of off-shell top quark production with associated backgrounds at a lepton collider.Comment: 9 pages, 5 figures, to appear in the proceedings of the European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 201

    Matching NLO QCD Corrections in WHIZARD with the POWHEG scheme

    Full text link
    Building on the new automatic subtraction of NLO amplitudes in WHIZARD, we present our implementation of the POWHEG scheme to match radiative corrections consistently with the parton shower. We apply this general framework to two linear collider processes, e+e− → ttˉe^+e^-\,\to\,t\bar{t} and e+e− → ttˉHe^+e^-\,\to\,t\bar{t}H.Comment: 7 pages, 4 figures, to appear in the proceedings of the European Physical Society Conference on High Energy Physics 2015 (EPS-HEP 2015), Vienna, Austria, 22nd to 29th of July 201

    Magnetic Fields Recorded by Chondrules Formed in Nebular Shocks

    Full text link
    Recent laboratory efforts (Fu et al., 2014) have constrained the remanent magnetizations of chondrules and the magnetic field strengths at which the chondrules were exposed to as they cooled below their Curie points. An outstanding question is whether the inferred paleofields represent the background magnetic field of the solar nebula or were unique to the chondrule-forming environment. We investigate the amplification of the magnetic field above background values for two proposed chondrule formation mechanisms, large-scale nebular shocks and planetary bow shocks. Behind large-scale shocks, the magnetic field parallel to the shock front is amplified by factors ∼10−30\sim 10-30, regardless of the magnetic diffusivity. Therefore, chondrules melted in these shocks probably recorded an amplified magnetic field. Behind planetary bow shocks, the field amplification is sensitive to the magnetic diffusivity. We compute the gas properties behind a bow shock around a 3000 km-radius planetary embryo, with and without atmospheres, using hydrodynamics models. We calculate the ionization state of the hot, shocked gas, including thermionic emission from dust, and thermal ionization of gas-phase potassium atoms, and the magnetic diffusivity due to Ohmic dissipation and ambipolar diffusion. We find that the diffusivity is sufficiently large that magnetic fields have already relaxed to background values in the shock downstream where chondrules acquire magnetizations, and that these locations are sufficiently far from the planetary embryos that chondrules should not have recorded a significant putative dynamo field generated on these bodies. We conclude that, if melted in planetary bow shocks, chondrules probably recorded the background nebular field.Comment: 17 pages, 11 figures, accepted for publication in Ap
    • …
    corecore