2,133 research outputs found

    VH-RELATED IDIOTOPES DETECTED BY SITE-DIRECTED MUTAGENESIS

    Get PDF
    The function of the CD4 cell surface protein as coreceptor on T helper lymphocytes and as receptor for HIV makes this glycoprotein a prime target for an immune intervention with mAb. A detailed understanding of the structural determinants on the therapeutic CD4 mAb that are involved in Ag binding or are recognized by anti-idiotypic mAb (anti-Id) may be important for designing antibodies with optimal therapeutic efficacy. Seven anti-Id raised against the CD4 mAb M-T310 were selected from a large panel with the intention to obtain CD4 mimicking structures with specificity foHr IV gp120. The selected anti-Id did not reacwt ith other CDCspecific mAb cross-blocking M-T310. Among these, mAb MT404, although having the same L chain as M-T310 and a VH region sequence differing onlya t 14 amino acid positions, was not recognized by the anti-Id. MT310 H chain complexed with the J558L L chain reacted with all anti-Id, thus demonstrating that the recognized idiotopes are located within the VH region. To identify the idiotopes of M-T310 seen by the anti-Id, variants of M-T404 containing one or more of the M-T3 1 O-derived substitutions were generated by oligonucleotide-directed mutagenesis. The reactivity pattern of the mutant proteins with the anti-Id demonstrated that the idiotopes reside within the complementarity determining region (CDR) 2 and CDR3 loops of the VH region. A major idiotope was definebdy a single amino acid in CDR2 that was recognized by three anti-Id, whereas the four other anti-Id reacted with determinants of CDR3. Although the performed amino acid substitutions did influence the Id recognition, Ag binding was not significantly affected, suggesting that none of the anti-Id can be considered as a mimicry of the CD4 A

    Sequence of the mouse Q4 class I gene and characterization of the gene product

    Get PDF
    The Q4 class I gene has been shown to participate in gene conversion events within the mouse major histocompatibility complex. Its complete genomic nucleotide sequence has been determined. The 5' half of Q4 resembles H-2 genes more strongly than other Q genes. Its 3' end, in contrast, is Q-like and contains a translational stop signal in exon 5 which predicts a polypeptide with an incomplete membrane spanning segment. The presence of two inverted B1 repeats suggests that part of the Q4 gene may be mobile within the genome. Gene transfer experiments have shown that the Q4 gene encodes a ß2-microglobulin associated polypeptide of Mr 41 000. A similar protein was found in activated mouse spleen cells. The Q4 polypeptide was found to be secreted both by spleen cells and by transfected fibroblasts and was not detectable on the cell surface. Antibody binding and twodimensional gel electrophoresis indicate that the Q4 molecule is identical to a mouse class I polypeptide, Qb-1, which has been previously described

    THE CELLULAR RECEPTOR (CD4) OF THE HUMAN IMMUNODEFICIENCY VIRUS IS EXPRESSED ON NEURONS AND GLIAL CELLS IN HUMAN BRAIN

    Get PDF
    The peculiar tropism of the human immunodeficiency virus (HIV) for T helper lymphocytes can be explained by a specific interaction between the virus and the CD4 molecule on these cells (1, 2). The tropism for T lymphocytes, however, can hardly account for the early brain infection observed in some AIDS (acquired immune deficiency syndrome) patients (3, 4). Since CD4 is also expressed on virus-susceptible non-T cell lines we wondered whether an additional expression site of CD4 could be demonstrated in neural tissue (5). To this end, CD4 expression in brain was analyzed with several different anti-CD4 mAbs, and using a CD4-specific cDNA probe in Northern blot analyses . CD4' cells and CD4-specific mRNA were found in the cerebellum, thalamus, and pons. The reactive cells could be identified as neurons as well as glial cells

    Universality in Random Walk Models with Birth and Death

    Get PDF
    Models of random walks are considered in which walkers are born at one location and die at all other locations with uniform death rate. Steady-state distributions of random walkers exhibit dimensionally dependent critical behavior as a function of the birth rate. Exact analytical results for a hyperspherical lattice yield a second-order phase transition with a nontrivial critical exponent for all positive dimensions D≠2, 4D\neq 2,~4. Numerical studies of hypercubic and fractal lattices indicate that these exact results are universal. Implications for the adsorption transition of polymers at curved interfaces are discussed.Comment: 11 pages, revtex, 2 postscript figure

    Imaging ellipsometry of graphene

    Get PDF
    Imaging ellipsometry studies of graphene on SiO2/Si and crystalline GaAs are presented. We demonstrate that imaging ellipsometry is a powerful tool to detect and characterize graphene on any flat substrate. Variable angle spectroscopic ellipsometry is used to explore the dispersion of the optical constants of graphene in the visible range with high lateral resolution. In this way the influence of the substrate on graphene's optical properties can be investigatedComment: 3 pages, 3 figure

    Combinatorial functions of two chimeric antibodies directed to human CD4 and one directed to the a-chain of the human interleukin-2 receptor

    Get PDF
    The general feasibility of chimerization of monoclonal antibodies (mAbs) has already been shown for a large number of them. In order to evaluate in vitro parameters relevant to immunosuppressive therapy, we have chimerized and synthesized two anti-CD4 mAbs recognizing two different epitopes on the human T-lymphocyte antigen, CD4. The chimerized mAbs are produced at levels corresponding to those of the original hybridoma cell lines. With respect to activation of human complement, the individual Abs are negative; however, when used in combination, complement activation was performed. When applied in combination, they were found to modulate the CD4 antigen, whereas the individual mAb do not display this property. Individually they mediate an up to 60% inhibition of the mixed lymphocyte reaction (MLR). However, by combination of an anti-CD4 mAb with one directed against the a-chain of the human IL2 receptor, nearly 100% inhibition of the MLR was achieved, even with reduced dosage of the mAbs. Our data suggest that the combination of an anti-CD4 mAb and an anti-IL2Rcc chain mAb is more effective with respect to immunosuppression than each mAb by itself, indicating that this mAb cocktail could be a new strategy for immunosuppressive therapy

    EXPRESSION OF A FUNCTIONAL CHIMERIC lg-MHC CLASS II PROTEIN

    Get PDF
    composed of the a- and ß-chains of the MHC class I1 I-E molecule fused to antibody V regions derived from anti-human CD4 mAb MT310. Expression vectors were constructed containing the functional, rearranged gene segments coding for the V region domains of the antibody H and L chains in place of the first domains of the complete structural genes of the I-E a- and ß-chains, respectively. Celltsr ansfected with both hybrid genes expressed a stable protein product on the cell surface. The chimeric molecule exhibited the idiotype of the antibody MT310 as shown by binding to the anti-idiotypic mAb 20-46. A protein of the anticipated molecular mass was immunoprecipitated witha nti-mouse IgG antiserum. Furthermore, human soluble CD4 did bind to thetr ansfected cell line, demonstrating that the chimeric protein possessed the binding capacity of the original mAb. Thus, the hybrid molecule retained: 1) the properties of a MHC class I1 protein with regardt o correct chain assembly and transport to the cell surface: as well as 2) the Ag binding capacity of the antibody genes used. Thgee neration of hybrid MHC class I1 molecules with highly specific, non-MHC-restricted bindingc apacities will be useful for studying MHC class 11-mediated effector functions such as selection of the T cell repertoire in thymus of transgenic mice

    Is the dynamics of open quantum systems always linear?

    Full text link
    We study the influence of the preparation of an open quantum system on its reduced time evolution. In contrast to the frequently considered case of an initial preparation where the total density matrix factorizes into a product of a system density matrix and a bath density matrix the time evolution generally is no longer governed by a linear map nor is this map affine. Put differently, the evolution is truly nonlinear and cannot be cast into the form of a linear map plus a term that is independent of the initial density matrix of the open quantum system. As a consequence, the inhomogeneity that emerges in formally exact generalized master equations is in fact a nonlinear term that vanishes for a factorizing initial state. The general results are elucidated with the example of two interacting spins prepared at thermal equilibrium with one spin subjected to an external field. The second spin represents the environment. The field allows the preparation of mixed density matrices of the first spin that can be represented as a convex combination of two limiting pure states, i.e. the preparable reduced density matrices make up a convex set. Moreover, the map from these reduced density matrices onto the corresponding density matrices of the total system is affine only for vanishing coupling between the spins. In general, the set of the accessible total density matrices is nonconvex.Comment: 19 pages, 3 figures, minor changes to improve readability, discussion on Mori's linear regime and references adde
    • …
    corecore