1,463 research outputs found

    Electro -absorptive and electro -optic quantum well modulators using surface acoustic wave

    Get PDF
    The characteristics of Al0.3Ga0.7As/GaAs QW acousto-absorption and acousto-optic modulators using the interaction between Surface Acoustic Wave (SAW) and quantum well (QW) optical waveguide structures are analyzed here theoretically. The QW structures are optimized by maximizing the optical confinement of modal field in the active region and the piezoelectric effect of SAW on QWs. The electric field induced by SAW reduces non-uniformly in depth, which limits in the development of high efficiency modulators, especially for devices with a large number of QWs in the active region. We present the results of the analysis of a range of QW SQW modulators using between one and 25 QWs in the active region. For devices with thin active regions, the QW structures are designed so that at the top surface strong SAW effects can be obtained while for the 25 periods structure, the QWs located at a depth of 2/3 SAW wavelength in order to obtain an uniform SAW induced electric field. The results show that the single and five QW devices are suitable for absorptive modulation and optical modulation respectively while the 25-QW modulators can shorten the modulation interaction length and thus increase modulation bandwidth. The effective index change of these devices are at least 10 times larger than the conventional surface acoustic wave devices. These results make the quantum-well modulators more attractive for the development of acousto-optic device applications.published_or_final_versio

    Asymmetric double-quantum-well phase modulator using surface acoustic waves

    Get PDF
    An AlGaAs-GaAs asymmetric double-quantum-well (DQW) optical phase modulator using surface acoustic waves is investigated theoretically. The optimization steps of the DQW structure, which so far have not been reported in detail, are discussed here. The optimized phase modulator structure is found to contain a five-period QDW active region. A surface acoustic wave induces a potential field which provides the phase modulation. Analysis of the modulation characteristics show that by using the asymmetric DQW, the large change of the induced potential at the surface and thus large modification of the quantum-well (QW) structure can be utilized. The modification of each QW structure is consistent, although this consistency is not always preserved in typical surface acoustic wave devices. Consequently, the change of refractive index in each of the five DQW's is almost identical. Besides, the change of effective refractive index is ten times larger here in comparison to a modulator with a five-period single QW as the active region and thus produces a larger phase modulation. In addition, a long wavelength and a low surface acoustic wave power required here simplify the fabrication of surface acoistic wave transducer and the acoustooptic phase modulator.published_or_final_versio

    Electro-optic and electro-absorptive modulations of AlGaAs/GaAs quantum well using surface acoustic wave

    Get PDF
    The surface acoustic wave produced electron absorptive and electro-optic modulation in AlGaAs/ GaAs quantum well structures are theoretically analyzed. The quantum well structures are optimized by maximizing the optical confinement of the modal field in the active region and the piezoelectric effect of surface acoustic wave on the quantum wells. The effect of penetration depth of the surface acoustic wave on the number (1-25 periods) of quantum wells, serving as the active region, is being studied. For 1-5 period structures, the quantum wells are designed on the top surface so that a strong piezoelectric effect can be obtained. For the 25-period structure, the quantum wells locate at a depth of two-thirds the acoustic-wave wavelength in order to obtain a uniform surface acoustic-wave-induced electric field. The results show that the single and five quantum well devices are suitable for absorptive modulation and optical modulation, respectively, while a general advantage of the 25-period quantum well modulator can shorten the modulation interaction length and increase the modulation bandwidth. The effective index change of these devices are at least ten times larger than the conventional surface acoustic wave devices. These results make the surface acoustic wave quantum well modulators more attractive for the development of acousto-optic device applications. © 1998 American Institute of Physics.published_or_final_versio

    Eigenstates and absorption spectra of interdiffused AlGaAs-GaAs multiple-quantum-well structures

    Get PDF
    published_or_final_versio

    AlGaAs-GaAs quantum-well electrooptic phase modulator with disorder delineated optical confinement

    Get PDF
    Waveguide phase modulators, with 0.5- and 1-ÎĽm quantum-well (QW) active regions which are defined by impurity-induced disordering are investigated theoretically. By controlling the extent of the interdiffusion in the lateral claddings, the refractive index difference between the core and claddings is used to provide single-mode operation. Strong optical confinement, which is required to produce single-mode high-efficiency modulation, requires the peak impurity concentration to be at the center of the QW active region. Moreover, the annealing time needs to be optimized so that single mode can be maintained at the desired bias field. A low dopant concentration is also expected to minimize the destruction of the modulator structure. The results show that since the core/cladding interface is graded, the width of the metal contact is important. A comparison of modulation efficiency for active layer thicknesses of 0.5 and 1.0 ÎĽm shows that the 0.5-ÎĽm one is a more efficient structure and its absorption loss can be reduced by increasing the applied field from 50 to 100 kV/cm.published_or_final_versio

    Electroabsorption enhancement in disordered, strained InGaAs/GaAs quantum well

    Get PDF
    The results of modeling the application of an external electric field to disordered, strained InGaAs/GaAs single quantum well are presented. An error function profile is used to model the constituent atoms composition after interdiffusion. Results indicate that the exciton Stark shift in the disordered quantum well is greater than in the as-grown 10 nm wide In0.2Ga0.8As well, and that the change in electroabsorption near the fundamental exciton absorption peak is enhanced by 30% in the disordered quantum well for a 30 kV/cm electric field applied perpendicular to the well. These results may be used to achieve optical modulators with improved performance characteristics in strained quantum well structures. © 1995 American Institute of Physics.published_or_final_versio

    Interdiffusion-induced polarization-independent optical gain of an InGaAs-InP quantum-well with carrier effects

    Get PDF
    A theoretical study of the polarization-independent optical gain using group V sublattice interdiffusion in InGaAs-InP quantum wells (QW's) is presented here. The reverse bias and carrier effects on the subband structures, transition energy, and optical gain of the interdiffused QW are discussed. The interdiffused QW structures are optimized in terms of their subband structure, carrier density, structural parameters, and properties of optical gain spectra. The results show that an optimized interdiffused QW structure can produce polarization-independent optical gain over a range of operation wavelengths around 1.5 ÎĽm, although the differential gain and linewidth enhancement factor are slightly degraded. The required tensile strain for the polarization-independent optical properties of a lattice-matched QW structure may be generated using interdiffusion. These results suggest that polarization-independent optical devices can be fabricated using interdiffusion in a lattice-matched InGaAsP QW structure.published_or_final_versio

    Thermal stability study of oxygen implanted AlGaAs/GaAs single quantum well structures using photoreflectance

    Get PDF
    The effects of interdiffusion on the band structure of two AlxGa1-xAs/GaAs single quantum well (SQW) structures were studied using room temperature photoreflectance. Rapid thermal annealing of the SQW structures at temperatures of 800°C, 900°C and 1000°C for times up to 180 seconds resulted in limited interdiffusion. Low dose (1014 cm-2) oxygen implantation reduced the thermal stability of these structures where the extent of the interdiffusion was found to be greater for the implanted samples for identical annealing conditions.published_or_final_versio

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel.In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime: we compute the two-point correlation functions for the linearized Einstein tensor and for the metric perturbations. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a quasi-static black hole.Comment: 75 pages, no figures, submitted to Living Reviews in Relativit

    Stochastic Gravity: Theory and Applications

    Get PDF
    Whereas semiclassical gravity is based on the semiclassical Einstein equation with sources given by the expectation value of the stress-energy tensor of quantum fields, stochastic semiclassical gravity is based on the Einstein-Langevin equation, which has in addition sources due to the noise kernel. In the first part, we describe the fundamentals of this new theory via two approaches: the axiomatic and the functional. In the second part, we describe three applications of stochastic gravity theory. First, we consider metric perturbations in a Minkowski spacetime, compute the two-point correlation functions of these perturbations and prove that Minkowski spacetime is a stable solution of semiclassical gravity. Second, we discuss structure formation from the stochastic gravity viewpoint. Third, we discuss the backreaction of Hawking radiation in the gravitational background of a black hole and describe the metric fluctuations near the event horizon of an evaporating black holeComment: 100 pages, no figures; an update of the 2003 review in Living Reviews in Relativity gr-qc/0307032 ; it includes new sections on the Validity of Semiclassical Gravity, the Stability of Minkowski Spacetime, and the Metric Fluctuations of an Evaporating Black Hol
    • …
    corecore