22 research outputs found

    Fostering effective and sustainable scientific collaboration and knowledge exchange: a workshop-based approach to establish a national ecological observatory network (NEON) domain-specific user group

    Get PDF
    The decision to establish a network of researchers centers on identifying shared research goals. Ecologically specific regions, such as the USA’s National Ecological Observatory Network’s (NEON’s) eco-climatic domains, are ideal locations by which to assemble researchers with a diverse range of expertise but focused on the same set of ecological challenges. The recently established Great Lakes User Group (GLUG) is NEON’s first domain specific ensemble of researchers, whose goal is to address scientific and technical issues specific to the Great Lakes Domain 5 (D05) by using NEON data to enable advancement of ecosystem science. Here, we report on GLUG’s kick off workshop, which comprised lightning talks, keynote presentations, breakout brainstorming sessions and field site visits. Together, these activities created an environment to foster and strengthen GLUG and NEON user engagement. The tangible outcomes of the workshop exceeded initial expectations and include plans for (i) two journal articles (in addition to this one), (ii) two potential funding proposals, (iii) an assignable assets request and (iv) development of classroom activities using NEON datasets. The success of this 2.5-day event was due to a combination of factors, including establishment of clear objectives, adopting engaging activities and providing opportunities for active participation and inclusive collaboration with diverse participants. Given the success of this approach we encourage others, wanting to organize similar groups of researchers, to adopt the workshop framework presented here which will strengthen existing collaborations and foster new ones, together with raising greater awareness and promotion of use of NEON datasets. Establishing domain specific user groups will help bridge the scale gap between site level data collection and addressing regional and larger ecological challenges

    A Ceratopsian Dinosaur from the Lower Cretaceous of Western North America, and the Biogeography of Neoceratopsia

    Get PDF
    Competing interests: Andrew A. Farke has read the journal's policy and the authors of this manuscript have the following competing interests: Andrew A. Farke is a volunteer section editor and academic editor for PLOS ONE. This does not alter the authors' adherence to PLOS ONE policies on sharing data and materials.Acknowledgments It is a pleasure to offer our most heartfelt thanks to Scott K. Madsen, who found OMNH 34557 and prepared it with consummate skill. We are grateful to James Taylor, Jack Owen, the Keebler family, and the Montana Bureau of Land Management for access to outcrops of the Cloverly Formation. We thank Xu Xing (IVPP) and Hai-Lu You (formerly CAGS-IG) for facilitating access to specimens, Mark Loewen, Joseph Frederickson, Darren Naish, and Leonardo Maiorino for productive discussion and comments, and Roger Burkhalter for assistance in photography. Gary Wisser, from the scientific visualization center at Western University of Health Sciences, is gratefully acknowledged for the high resolution scan of the cranium. Reviews by Peter Makovicky, Hai-Lu You, and editor Peter Wilf improved the manuscript.Author Contributions Conceived and designed the experiments: AAF WDM RLC. Performed the experiments: AAF WDM RLC. Analyzed the data: AAF WDM RLC MJW. Contributed reagents/materials/analysis tools: AAF WDM RLC MJW. Wrote the paper: AAF WDM RLC MJW.The fossil record for neoceratopsian (horned) dinosaurs in the Lower Cretaceous of North America primarily comprises isolated teeth and postcrania of limited taxonomic resolution, hampering previous efforts to reconstruct the early evolution of this group in North America. An associated cranium and lower jaw from the Cloverly Formation (?middle–late Albian, between 104 and 109 million years old) of southern Montana is designated as the holotype for Aquilops americanus gen. et sp. nov. Aquilops americanus is distinguished by several autapomorphies, including a strongly hooked rostral bone with a midline boss and an elongate and sharply pointed antorbital fossa. The skull in the only known specimen is comparatively small, measuring 84 mm between the tips of the rostral and jugal. The taxon is interpreted as a basal neoceratopsian closely related to Early Cretaceous Asian taxa, such as Liaoceratops and Auroraceratops. Biogeographically, A. americanus probably originated via a dispersal from Asia into North America; the exact route of this dispersal is ambiguous, although a Beringian rather than European route seems more likely in light of the absence of ceratopsians in the Early Cretaceous of Europe. Other amniote clades show similar biogeographic patterns, supporting an intercontinental migratory event between Asia and North America during the late Early Cretaceous. The temporal and geographic distribution of Upper Cretaceous neoceratopsians (leptoceratopsids and ceratopsoids) suggests at least intermittent connections between North America and Asia through the early Late Cretaceous, likely followed by an interval of isolation and finally reconnection during the latest Cretaceous.Funding was received from the National Science Foundation (DEB 9401094, 9870173, http://www.nsf.gov); National Geographic Society (5918-97, http://www.nationalgeographic.com/); and American Chemical Society (PRF #38572-AC8, http://www.acs.org). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Yeshttp://www.plosone.org/static/editorial#pee

    University of California Press eScholarship editions

    No full text
    The Dinosauria provides a state-of-the-science view of current world research on dinosaur behavior, evolution, and extinction. Its internationally renowned authors, all specialists on the various members of the Dinosauria, contribute definitive descriptions and illustrations of these magnificent Mesozoic beasts

    Sea-Level Rise Impact On A Salt Marsh System Of The Lower St. Johns River

    No full text
    The impact of sea-level rise on salt marsh sustainability is examined for the lower St. Johns River and associated salt marsh (Spartina alterniflora) system. A two-dimensional hydrodynamic model, forced by tides and sea-level rise, is coupled with a zero-dimensional marsh model to estimate the level of biomass productivity of S. alterniflora across the salt marsh landscape for present day and anticipated future conditions (i.e., when subjected to sea-level rise). The hydrodynamic model results show mean low water (MLW) to be highly spatially variable with a SD of 60.18m and mean high water (MHW) to be less spatially variable with a SD 60.03 m. The spatial variability of MLW and MHW is particularly evident within the tidal creeks of the salt marsh. MLW and MHW are sensitive to sea-level rise and respond in a nonlinear fashion (i.e., MLW and MHW elevate by an amount that is not proportional to the level of sea-level rise). The coupled hydrodynamic-marsh model results illustrate the spatial heterogeneity of biomass productivity and indicate marsh vulnerability to sea-level rise. The model is then used to demonstrate an application of engineered accretion that can help sustain a marsh that is exposed to sea-level rise. © 2013 American Society of Civil Engineers

    Shape of Mesozoic dinosaur richness

    No full text
    The richness of Mesozoic Dinosauria is examined through the use of a new global database. Mesozoic dinosaurs show a steadily increasing rate of diversification, in part attributable to the development of new innovations driving an increasing variety of behavioral strategies. The data do not suggest that dinosaurs were decreasing in richness leading to extinction during the last ∌10 m.y. of the Cretaceous. Refinement of the dating of dinosaur fossils, rather than the collection of more dinosaurs, is the best way to resolve globally the rate of the Cretaceous-Tertiary dinosaur extinction. © 2004 Geological Society of America

    A coupled, two-dimensional hydrodynamic-marsh model with biological feedback

    No full text
    A spatially-explicit model (Hydro-MEM model) that couples astronomic tides and Spartina alterniflora dynamics was developed to examine the effects of sea-level rise on salt marsh productivity in northeast Florida. The hydrodynamic component of the model simulates the hydroperiod of the marsh surface driven by astronomic tides and the marsh platform topography, and demonstrates biophysical feedback that non- uniformly modifies marsh platform accretion, plant biomass, and water levels across the estuarine landscape, forming a complex geometry. The marsh platform accretes organic and inorganic matter depending on the sediment load and biomass density which are simulated by the ecological-marsh component (MEM) of the model and are functions of the hydroperiod. Two sea-level rise projections for the year 2050 were simulated: 11 cm (low) and 48 cm (high). Overall biomass density increased under the low sea-level rise scenario by 54% and declined under the high sea-level rise scenario by 21%. The biomass-driven topographic and bottom friction parameter updates were assessed by demonstrating numerical convergence (the state where the difference between biomass densities for two different coupling time steps approaches a small number). The maximum coupling time steps for low and high sea-level rise cases were calculated to be 10 and 5 years, respectively. A comparison of the Hydro-MEM model with a parametric marsh equilibrium model (MEM) indicates improvement in terms of spatial pattern of biomass distribution due to the coupling and dynamic sea-level rise approaches. This integrated Hydro-MEM model provides an innovative method by which to assess the complex spatial dynamics of salt marsh grasses and predict the impacts of possible future sea level conditions

    Carbon pools and fluxes in small temperate forest landscapes: Variability and implications for sampling design

    No full text
    Assessing forest carbon storage and cycling over large areas is a growing challenge that is complicated by the inherent heterogeneity of forest systems. Field measurements must be conducted and analyzed appropriately to generate precise estimates at scales large enough for mapping or comparison with remote sensing data. In this study we examined spatial variability in three small temperate forest landscapes. Our objectives were (1) to quantify the magnitude and scale of variability in stand structure, carbon pools and carbon fluxes and (2) to assess how this variability influences both optimal sampling strategy and required sampling intensity. Stand structure was consistently less variable than carbon pools or fluxes, suggesting that measuring carbon dynamics may require more intense sampling than traditional forestry inventories. Likewise, the magnitude of variability differed substantially among response variables, implying that sampling efficiency can be enhanced by adopting a flexible sampling strategy that is optimized for each carbon pool. Our results indicate that plots dispersed across the study area are generally more effective than clustered plots for characterizing carbon dynamics

    Detrital carbon pools in temperate forests: magnitude and potential for landscape-scale assessment

    No full text
    Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass, primary production) that can be estimated by remote sensing. We characterized these relationships with and without forest age as an additional predictive variable. Results depended on forest type. Carbon in dead woody debris was substantial at all sites, accounting for ∌17% of aboveground carbon, whereas carbon in forest floor was substantial in the subalpine Rocky Mountains (36% of aboveground carbon) and less important in northern hardwoods of New England and mixed forests of the upper Midwest (∌7%). Relationships to aboveground characteristics accounted for between 38% and 59% of the variability in carbon stored in forest floor and between 21% and 71% of the variability in carbon stored in dead woody material, indicating substantial differences among sites. Relating dead woody debris or forest floor carbon to other aboveground characteristics and (or) stand age may, in some forest types, provide a partial solution to the challenge of assessing fine-scale variability
    corecore