4 research outputs found

    Charmonia in moving frames

    Full text link
    Lattice simulation of charmonium resonances with non-zero momentum provides additional information on the two-meson scattering matrices. However, the reduced rotational symmetry in a moving frame renders a number of states with different JPJ^P in the same lattice irreducible representation. The identification of JPJ^P for these states is particularly important, since quarkonium spectra contain a number of states with different JPJ^P in a relatively narrow energy region. Preliminary results concerning spin-identification are presented in relation to our study of charmonium resonances in flight on the Nf=2+1 CLS ensembles.Comment: 6 pages, presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Charmonium resonances on the lattice

    Get PDF
    The nature of resonances and excited states near decay thresholds is encoded in scattering amplitudes, which can be extracted from single-particle and multiparticle correlators in finite volumes. Lattice calculations have only recently reached the precision required for a reliable study of such correlators. The distillation method represents a significant improvement insofar as it simplifies quark contractions and allows one to easily extend the operator basis used to construct interpolators. We present preliminary results on charmonium bound states and resonances on the Nf=2+1 CLS ensembles. The long term goal of our investigation is to understand the properties of the X resonances that do not fit into conventional models of quark-antiquark mesons. We tune various parameters of the distillation method and the charm quark mass. As a first result, we present the masses of the ground and excited states in the 0++ and 1-- channels.Comment: 10 pages, 5 figures, talk and poster presented at the 35th International Symposium on Lattice Field Theory, 18-24 June 2017, Granada, Spai

    Charmonia in moving frames

    No full text
    Lattice simulation of charmonium resonances with non-zero momentum provides additional information on the two-meson scattering matrices. However, the reduced rotational symmetry in a moving frame renders a number of states with different JP in the same lattice irreducible representation. The identification of JP for these states is particularly important, since quarkonium spectra contain a number of states with different JP in a relatively narrow energy region. Preliminary results concerning spin-identification are presented in relation to our study of charmonium resonances in flight on the Nf = 2 + 1 CLS ensembles
    corecore