2,412 research outputs found

    Impact of the California sea lion (Zalophus californianus) on salmon fisheries in Monterey Bay, California

    Get PDF
    To assess the impact of California sea lions (Zalophus californianus) on salmon fisheries in the Monterey Bay region of California, the percentages of hooked fish taken by sea lions in commercial and recreational salmon fisheries were estimated from 1997 to 1999. Onboard surveys of sea lion interactions with the commercial and recreational f isheries and dockside interviews with fishermen after their return to port were conducted in the ports of Santa Cruz, Moss Landing, and Monterey. Approximately 1745 hours of onboard and dockside surveys were conducted—924 hours in the commercial fishery and 821 hours in the recreational fishery (commercial passenger fishing vessels [CPFVs] and personal skiffs combined). Adult male California sea lions were responsible for 98.4% of the observed depredations of hooked salmon in the commercial and recreational fisheries in Monterey Bay. Mean annual percentages of hooked salmon taken by sea lions ranged from 8.5% to 28.6% in the commercial fishery, 2.2% to 18.36% in the CPFVs, and 4.0% to 17.5% in the personal skiff fishery. Depredation levels in the commercial and recreational salmon fisheries were greatest in 1998—likely a result of the large El Niño Southern Oscillation (ENSO) event that occurred from 1997 to 1998 that reduced natural prey resources. Commercial fishermen lost an estimated 18,03118,031−60,570 of gear and 225,833225,833−498,076 worth of salmon as a result of interactions with sea lions. Approximately 1.4−6.2% of the available salmon population was removed from the system as a result of sea lion interactions with the fishery. Assessing the impact of a growing sea lion population on fisheries stocks is difficult, but may be necessary for effective fisheries management

    Food habits of California Sea Lions (Zalophus californianus) and their impact on Salmonid Fisheries in Monterey Bay, California

    Get PDF
    In the ocean commercial troll and recreational salmon fishery in Monterey Bay California, California sea lions (Zalophus califomianus) will swim near or follow fishing boats and will depredate fish once hooked. The objectives of the study were to determine the percentage of salmon taken by pinnipeds in commercial and recreational fisheries, identify relative importance of prey items seasonally consumed by sea lions, and determine the proportion of salmonids in the sea lion diet on a seasonal basis. From April 1997 through September 1998, 1041 hours of onboard and dockside surveys of the commercial and recreational salmon fisheries were conducted at the three ports in Monterey Bay, California. Sea lions depreadated 7.9 % of the fish hooked in the commercial fishery in 1997 and 28.6 % in 1998,8.4 % (1997) and 18.3 % (1998) of the CPFV fishery, and 15.6 % (1997) and 17.5 % (1998) of the private skiff fishery. Increased depredation rates in both the commercial and recreational salmon fisheries in 1998 were most likely the result of the large EI Nino Southern Oscillation event that occurred in 1997-1998 during which a greater number of sea lions were present in central California. Prey hardparts identified in sea lion fecal samples collected in Monterey Bay indicated that schooling fishes were the predominant prey fish species, such as market squid (Loligo opalescens), Pacific sardine (Sardinops caeruleus), northern anchovy (Engraulis mordax), and rockfish (Sebastes sp.). Sea lions consumed similar prey species in the summer and fall 1997, winter 1997-98, and spring 1998 (PSI> 70.0) with market squid and northern anchovy being the dominant prey species. However, prey composition changed significantly during the summer 1998 and fall 1998 (PSI < 46.0) because of the increased importance of sardine and rockfish in the diet and the decreased importance of market squid. This report does not intend to imply that salmonids are not a prey species for pinnipeds in the Monterey Bay region, but highlights the difficulties encountered in establishing the role of salmonids in the pinniped diet when analyzing fecal samples. (PDF contains 38 pages)

    Chiral Fermi liquid approach to neutron matter

    Full text link
    We present a microscopic calculation of the complete quasiparticle interaction, including central as well as noncentral components, in neutron matter from high-precision two- and three-body forces derived within the framework of chiral effective field theory. The contributions from two-nucleon forces are computed in many-body perturbation theory to first and second order (without any simplifying approximations). In addition we include the leading-order one-loop diagrams from the N2LO chiral three-nucleon force, which contribute to all Fermi liquid parameters except those associated with the center-of-mass tensor interaction. The relative-momentum dependence of the quasiparticle interaction is expanded in Legendre polynomials up to L=2. Second-order Pauli blocking and medium polarization effects act coherently in specific channels, namely for the Landau parameters f_1, h_0 and g_0, which results in a dramatic increase in the quasiparticle effective mass as well as a decrease in both the effective tensor force and the neutron matter spin susceptibility. For densities greater than about half nuclear matter saturation density \rho_0, the contributions to the Fermi liquid parameters from the leading-order chiral three-nucleon force scale in all cases approximately linearly with the nucleon density. The largest effect of the three-nucleon force is to generate a strongly repulsive effective interaction in the isotropic spin-independent channel. We show that the leading-order chiral three-nucleon force leads to an increase in the spin susceptibility of neutron matter, but we observe no evidence for a ferromagnetic spin instability in the vicinity of the saturation density \rho_0. This work sets the foundation for future studies of neutron matter response to weak and electromagnetic probes with applications to neutron star structure and evolution.Comment: 21 pages, 6 figures, 5 table

    Lambda-nuclear interactions and hyperon puzzle in neutron stars

    Full text link
    Brueckner theory is used to investigate the in-medium properties of a Λ\Lambda-hyperon in nuclear and neutron matter, based on hyperon-nucleon interactions derived within SU(3) chiral effective field theory (EFT). It is shown that the resulting Λ\Lambda single-particle potential UΛ(pΛ=0,ρ)U_\Lambda(p_\Lambda =0,\rho) becomes strongly repulsive for densities ρ\rho of two-to-three times that of normal nuclear matter. Adding a density-dependent effective ΛN\Lambda N-interaction constructed from chiral ΛNN\Lambda NN three-body forces increases the repulsion further. Consequences of these findings for neutron stars are discussed. It is argued that for hyperon-nuclear interactions with properties such as those deduced from the SU(3) EFT potentials, the onset for hyperon formation in the core of neutron stars is expected to be shifted to extremely high baryon density, thus potentially resolving the so-called hyperon puzzle.Comment: 6 pages, two figures; longer discussion about uncertainties adde

    Weekly irinotecan in a patient with metastatic colorectal cancer on hemodialysis due to chronic renal failure

    Get PDF
    Background: The cytotoxic treatment of patients suffering from advanced or metastatic cancer undergoing hemodialysis due to chronic renal failure still remains a problem, since for those patients pharmacokinetic and pharmacodynamic data on most cytotoxic agents are lacking. Case Report: We report a 45-year-old male who suffered from chronic renal failure and was diagnosed with stage-3 colorectal cancer (CRC) in February 2000. After surgical removal of the tumor an adjuvant chemotherapy of dose-reduced i.v. bolus 5-fluorouracil and folinic acid was begun (Mayo protocol). Due to excessive gastrointestinal toxicity, therapy was discontinued after the first cycle. In April 2000 liver metastases were diagnosed. The patient was then put on a weekly schedule of dose-reduced CPT-11 (50 mg/m(2), 80 mg total). No hematological or non-hematological toxicity grade 3/4 was observed. Due to excellent tolerability and lack of severe side effects the dose was increased up to 80 mg/m2 (140 mg total) weekly. A dose escalation to 100 mg/m(2) (180 mg total) resulted in severe diarrhea (grade 4). Within 2 months of treatment the patient achieved a lasting partial remission until April 2001 (12 months). A significant progression of hepatic metastases required an alternative treatment regimen beginning in July 2001 (HAI, hepatic artery infusion). Conclusion: This case report demonstrates the feasibility and efficacy of a weekly treatment with dose-reduced CPT-11 in a patient with metastatic CRC on hemodialysis due to chronic renal failure

    Microscopic optical potential from chiral nuclear forces

    Full text link
    The energy- and density-dependent single-particle potential for nucleons is constructed in a medium of infinite isospin-symmetric nuclear matter starting from realistic nuclear interactions derived within the framework of chiral effective field theory. The leading-order terms from both two- and three-nucleon forces give rise to real, energy-independent contributions to the nucleon self-energy. The Hartree-Fock contribution from the two-nucleon force is attractive and strongly momentum dependent, in contrast to the contribution from the three-nucleon force which provides a nearly constant repulsive mean field that grows approximately linearly with the nuclear density. Together, the leading-order perturbative contributions yield an attractive single-particle potential that is however too weak compared to phenomenology. Second-order contributions from two- and three-body forces then provide the additional attraction required to reach the phenomenological depth. The imaginary part of the optical potential, which is positive (negative) for momenta below (above) the Fermi momentum, arises at second-order and is nearly inversion-symmetric about the Fermi surface when two-nucleon interactions alone are present. The imaginary part is strongly absorptive and requires the inclusion of an effective mass correction as well as self-consistent single-particle energies to attain qualitative agreement with phenomenology.Comment: 12 pages, 7 figures, added references, corrected typo

    Can EU Conditionality Remedy Soft Budget Constraints in Transition Countries?

    Get PDF
    Soft budget constraints (SBCs) are a persistent feature of transition economies and have been blamed for i.a. a lack of fiscal consolidation and sluggish growth. EU eastward enlargement has - among other things - been conditioned on tackling SBCs. This paper analyzes such outside conditionality theoretically and empirically. First, modelling the SBC problem as a war of attrition between the applicant countries' governments and firms we find that outside conditionality can foster SBC hardening. Yet, toughening the EU stance or reducing the number of enlargement rounds may have ambiguous effects. Second, estimating SBC hardening in a partial adjustment model by measuring the reaction of employment to output changes we find that EU conditionality did indeed help candidates to fight SBCs.soft budget constraint, EU enlargement, war of attrition
    corecore