3,285 research outputs found

    Predicting Understorey VegetationCover from Overstorey Attributes in Two Temperate MountainForests

    Get PDF
    Summary : It is important to develop a predictive understanding for the environmental controls on understorey vegetation, which harbor most of the plant biodiversity and are the source of food and cover for wildlife. Forest succession models (i. e. gap models) representing overstorey dynamics are not commonly linked to mathematical models of understorey dynamics. This is surprising, given that understorey vegetation clearly responds to changes in the overstorey that result in changing light availability. One difficulty may lie in the coarse representation of light regime captured by most gap models. Linkage of overstorey-understorey models might be facilitated if the diameter structure of simulated stands could be used to drive understorey change, as a proxy for light and other influences. The objective of this study was to determine whether understorey vegetation cover can be adequately predicted by variables derived from overstorey diameter structure alone, or if canopy cover and light availability are important, from additional predictors. Field sampling was conducted at a montane and a subalpine study area in the Swiss Alps. We used regression analysis to assess the relative importance of various overstorey predictors for understorey cover and composition. In the subalpine study area, the relative dominance of graminoids increased with increasing light availability, at the expense of forbs. In the montane study area, forb cover increased sharply with increasing light, while graminoid cover remained at low levels. As a result, the relative dominance of graminoid species declined with increasing light levels. This difference is attributed to the presence of Adenostyles alliariae, a tall, large-leaved forb. The effects of changes in the physical environment on plant community composition were thus mediated by interspecific interactions. This makes it difficult to predict overstorey-induced changes in understorey species composition at the level of functional groups. At both study sites, diameter structure variables were found to provide a reasonable approximation of total understorey cover, cover of the more common species, and species richness. Models of understorey community composition often improved (0-31% increased predictive ability) with inclusion of variables representing the light environment. In the context of gap model development, the great complexity associated with improved representation of light availability must be weighed against the relatively low gain in predictive power that is likely to result. We recommend that efforts to include forest understorey dynamics in gap models begin by considering empirical relationships between understorey patterns and overstorey diameter structur

    Improving the establishment submodel of a forest patch model to assess the long-term protective effect of mountain forests

    Get PDF
    Simulation models such as forest patch models can be used to forecast the development of forest structural attributes over time. However, predictions of such models with respect to the impact of forest dynamics on the long-term protective effect of mountain forests may be of limited accuracy where tree regeneration is simulated with little detail. For this reason, we improved the establishment submodel of the ForClim forest patch model by implementing a more detailed representation of tree regeneration. Our refined submodel included canopy shading and ungulate browsing, two important constraints to sapling growth in mountain forests. To compare the old and the new establishment submodel of ForClim, we simulated the successional dynamics of the Stotzigwald protection forest in the Swiss Alps over a 60-year period. This forest provides protection for an important traffic route, but currently contains an alarmingly low density of tree regeneration. The comparison yielded a significantly longer regeneration period for the new model version, bringing the simulations into closer agreement with the known slow stand dynamics of mountain forests. In addition, the new model version was applied to forecast the future ability of the Stotzigwald forest to buffer the valley below from rockfall disturbance. Two scenarios were simulated: (1) canopy shading but no browsing impact, and (2) canopy shading and high browsing impact. The simulated stand structures were then compared to stand structure targets for rockfall protection, in order to assess their long-term protective effects. Under both scenarios, the initial sparse level of tree regeneration affected the long-term protective effect of the forest, which considerably declined during the first 40years. In the complete absence of browsing, the density of small trees increased slightly after 60years, raising hope for an eventual recovery of the protective effect. In the scenario that included browsing, however, the density of small trees remained at very low levels. With our improved establishment submodel, we provide an enhanced tool for studying the impacts of structural dynamics on the long-term protective effect of mountain forests. For certain purposes, it is important that predictive models of forest dynamics adequately represent critical processes for tree regeneration, such as sapling responses to low light levels and high browsing pressur

    Toward a Theory of Legislative Decision

    Get PDF
    Recent developments in formal political analysis have spawned two seemingly related theories of democratic political processes. The more familiar of the two is the theory of electoral competition based on Downs' (1957) heuristics and greatly elaborated by Davis, Hinich and Ordeshook (1970), Kramer (1975), McKelvey (1976), and others. Somewhat less familiar (perhaps because the intellectual movement is less well integrated) is the theory of legislative decision which has grown from roots in game theory and the theory of social choice. Black (1958), Riker (1962), Plott (1967), Wilson (1969), Schwartz (1970), Kadane (1972), and several others have nurtured the rudimentary models which compose this theory

    Phase Structure of Compact Star in Modified Quark-Meson Coupling Model

    Full text link
    The K−^- condensation and quark deconfinement phase transitions are investigated in the modified quark-meson coupling model. It is shown that K−^- condensation is suppressed because of the quark deconfinement when B1/4<B^{1/4}<202.2MeV, where BB is the bag constant for unpaired quark matter. With the equation of state (EOS) solved self-consistently, we discuss the properties of compact stars. We find that the EOS of pure hadron matter with condensed K−^- phase should be ruled out by the redshift for star EXO0748-676, while EOS containing unpaired quark matter phase with B1/4B^{1/4} being about 180MeV could be consistent with this observation and the best measured mass of star PSR 1913+16. We then probe into the change of the phase structures in possible compact stars with deconfinment phase as the central densities increase. But if the recent inferred massive star among Terzan 5 with M>>1.68M⊙_{\odot} is confirmed, all the present EOSes with condensed phase and deconfined phase would be ruled out and therefore these exotic phases are unlikely to appear within neutron stars.Comment: 11 pages, 5 figure

    "Antiscepticism and Easy Justification" - Ch 5 of Seemings and Epistemic Justification

    Get PDF
    In this chapter I investigate epistemological consequences of the fact that seeming-based justification is elusive, in the sense that the subject can lose this justification simply by reflecting on her seemings. I argue that since seeming-based justification is elusive, the antisceptical bite of phenomenal conservatism is importantly limited. I also contend that since seeming-based justification has this feature, phenomenal conservatism isn’t actually afflicted by easy justification problems

    Polarization Measurements of Arecibo-Sky Pulsars: Faraday Rotations and Emission-Beam Analyses

    Full text link
    We present Faraday Rotation Measure (RM) values derived at L- and P-band as well as some 60 Stokes-parameter profiles, both determined from our longstanding Arecibo dual-frequency pulsar polarimetry programs. Many of the RM measurements were carried out toward the inner Galaxy and the Anticenter on pulsars with no previous determination, while others are re-measurements intended to confirm or improve the accuracy of existing values. Stokes-parameter profiles are displayed for the 58 pulsars for which no meaningful Stokes profile at lower frequency is available and four without a high frequency pair. This is a population that includes many distant pulsars in the inner Galaxy. A number of these polarized pulse profiles exhibit clear interstellar-scattering tails; nonetheless, we have attempted to interpret the associated emission-beam structures and to provide morphological classifications and geometrical models where possible

    The Radial Extent and Warp of the Ionized Galactic Disk. I. A VLBA Survey of Extragalactic Sources Toward the Anticenter

    Full text link
    We report multifrequency Very Long Baseline Array observations of twelve active galactic nuclei seen toward the Galactic anticenter. All of the sources are at |b| < 10 degrees and seven have |b| < 0.5 degrees. Our VLBA observations can detect an enhancement in the angular broadening of these sources due to an extended H II disk, if the orientation of the H II disk in the outer Galaxy is similar to that of the H I disk. Such an extended H II disk is suggested by the C IV absorption in a quasar's spectrum, the appearance of H I disks of nearby spiral galaxies, and models of Ly-alpha cloud absorbers and the Galactic fountain. We detect eleven of the twelve sources at one or more frequencies; nine of the sources are compact and suitable for an angular broadening analysis. A preliminary analysis of the observed angular diameters suggests that the H II disk does not display considerable warping or flaring and does not extend to large Galactocentric distances (R >~ 100 kpc). A companion paper (Lazio & Cordes 1997) combines these observations with those in the literature and presents a more comprehensive analysis.Comment: 19 pages, LaTeX2e with AASTeX macro aaspp4, accepted for publication in ApJS, Vol. 115, 1998 April; Figures 1, 3, and 4 included, for figures of individual sources see http://astrosun.tn.cornell.edu/students/lazio/Anticenter/anticenterI.htm
    • …
    corecore