3,478 research outputs found

    Arecibo HI Absorption Measurements of Pulsars and the Electron Density at Intermediate Longitudes in the First Galactic Quadrant

    Get PDF
    We have used the Arecibo telescope to measure the HI absorption spectra of eight pulsars. We show how kinematic distance measurements depend upon the values of the galactic constants R_o and Theta_o, and we select our preferred current values from the literature. We then derive kinematic distances for the low-latitude pulsars in our sample and electron densities along their lines of sight. We combine these measurements with all others in the inner galactic plane visible from Arecibo to study the electron density in this region. The electron density in the interarm range 48 degrees < l < 70 degrees is [0.017 (-0.007,+0.012) (68% c.l.)] cm^(-3). This is 0.75 (-0.22,+0.49) (68% c.l.) of the value calculated by the Cordes & Lazio (2002) galactic electron density model. The model agrees more closely with electron density measurements toward Arecibo pulsars lying closer to the galactic center, at 30 degrees<l<48 degrees. Our analysis leads to the best current estimate of the distance of the relativistic binary pulsar B1913+16: d=(9.0 +/- 3) kpc. We use the high-latitude pulsars to search for small-scale structure in the interstellar hydrogen observed in absorption over multiple epochs. PSR B0301+19 exhibited significant changes in its absorption spectrum over 22 yr, indicating HI structure on a ~500 AU scale.Comment: Accepted by Astrophysical Journal September 200

    Detection of OH absorption against PSR B1849+00

    Full text link
    We have searched for OH absorption against seven pulsars using the Arecibo telescope. In both OH mainlines (at 1665 and 1667 MHz), deep and narrow absorption features were detected toward PSR B1849+00. In addition, we have detected several absorption and emission features against B33.6+0.1, a nearby supernova remnant (SNR). The most interesting result of this study is that a pencil-sharp absorption sample against the PSR differs greatly from the large-angle absorption sample observed against the SNR. If both the PSR and the SNR probe the same molecular cloud then this finding has important implications for absorption studies of the molecular medium, as it shows that the statistics of absorbing OH depends on the size of the background source. We also show that the OH absorption against the PSR most likely originates from a small (<30 arcsec) and dense (>10^5 cm^-3) molecular clump.Comment: 12 pages, 8 figures. Accepted for publication in Ap

    Does tiny-scale atomic structure exist in the interstellar medium ?

    Full text link
    We report on preliminary results from the recent multi-epoch neutral hydrogen absorption measurements toward three pulsars, B0823+26, B1133+16 and B2016+28, using the Arecibo telescope. We do not find significant variations in optical depth profiles over periods of 0.3 and 9--10 yr, or on spatial scales of 10--20 and 70--85 AU. The large number of non detections of the tiny scale atomic structure suggests that the AU-sized structure is not ubiquitous in the interstellar medium and could be quite a rare phenomenon.Comment: Accepted by ApJ Letters, 5 pages, 2 figure

    The geometry of the double-pulsar system J0737-3039 from systematic intensity variations

    Full text link
    The recent discovery of J0737-3039A & B-two pulsars in a highly relativistic orbit around one another - offers an unprecedented opportunity to study the elusive physics of pulsar radio emission. The system contains a rapidly rotating pulsar with a spin period of 22.7 ms and a slow companion with a spin period of 2.77 s, hereafter referred to as 'A' and 'B', respectively. A unique property of the system is that the pulsed radio flux from B increases systematically by almost two orders-of-magnitude during two short portions of each orbit. Here, we describe a geometrical model of the system that simultaneously explains the intensity variations of B and makes definitive and testable predictions for the future evolution of the emission properties of both stars. Our model assumes that B's pulsed radio flux increases when illuminated by emission from A. This model provides constraints on the spin axis orientation and emission geometry of A and predicts that its pulse profile will evolve considerably over the next several years due to geodetic precession until it disappears entirely in 15-20 years

    Determination of the geometry of the PSR B1913+16 system by geodetic precession

    Get PDF
    New observations of the binary pulsar B1913+16 are presented. Since 1978 the leading component of the pulse profile has weakend dramatically by about 40%. For the first time, a decrease in component separation is observed, consistent with expectations of geodetic precession. Assuming the correctness of general relativity and a circular hollow-cone like beam, a fully consistent model for the system geometry is developed. The misalignment angle between pulsar spin and orbital momentum is determined giving direct evidence for an asymmetric kick during the second supernova explosion. It is argued that the orbital inclination angle is 132\fdg8 (rather than 47\fdg2). A prediction of this model is that PSR B1913+16 will not be observable anymore after the year 2025.Comment: 16 pages, incl. 5 figures, accepted for publication in Ap

    The Radial Extent and Warp of the Ionized Galactic Disk. I. A VLBA Survey of Extragalactic Sources Toward the Anticenter

    Full text link
    We report multifrequency Very Long Baseline Array observations of twelve active galactic nuclei seen toward the Galactic anticenter. All of the sources are at |b| < 10 degrees and seven have |b| < 0.5 degrees. Our VLBA observations can detect an enhancement in the angular broadening of these sources due to an extended H II disk, if the orientation of the H II disk in the outer Galaxy is similar to that of the H I disk. Such an extended H II disk is suggested by the C IV absorption in a quasar's spectrum, the appearance of H I disks of nearby spiral galaxies, and models of Ly-alpha cloud absorbers and the Galactic fountain. We detect eleven of the twelve sources at one or more frequencies; nine of the sources are compact and suitable for an angular broadening analysis. A preliminary analysis of the observed angular diameters suggests that the H II disk does not display considerable warping or flaring and does not extend to large Galactocentric distances (R >~ 100 kpc). A companion paper (Lazio & Cordes 1997) combines these observations with those in the literature and presents a more comprehensive analysis.Comment: 19 pages, LaTeX2e with AASTeX macro aaspp4, accepted for publication in ApJS, Vol. 115, 1998 April; Figures 1, 3, and 4 included, for figures of individual sources see http://astrosun.tn.cornell.edu/students/lazio/Anticenter/anticenterI.htm

    PSR J1829+2456: a relativistic binary pulsar

    Get PDF
    We report the discovery of a new binary pulsar, PSR J1829+2456, found during a mid-latitude drift-scan survey with the Arecibo telescope. Our initial timing observations show the 41-ms pulsar to be in a 28-hr, slightly eccentric, binary orbit. The advance of periastron, omegadot = 0.28 +/- 0.01 deg/yr is derived from our timing observations spanning 200 days. Assuming that the advance of periastron is purely relativistic and a reasonable range of neutron star masses for PSR J1829+2456 we constrain the companion mass to be between 1.22 Msun and 1.38 Msun, making it likely to be another neutron star. We also place a firm upper limit on the pulsar mass of 1.38 Msun. The expected coalescence time due to gravitational-wave emission is long (~60 Gyr) and this system will not significantly impact upon calculations of merger rates that are relevant to upcoming instruments such as LIGO.Comment: Accepted MNRAS, 5 pages, 3 figure

    A CLEAN-based Method for Deconvolving Interstellar Pulse Broadening from Radio Pulses

    Get PDF
    Multipath propagation in the interstellar medium distorts radio pulses, an effect predominant for distant pulsars observed at low frequencies. Typically, broadened pulses are analyzed to determine the amount of propagation-induced pulse broadening, but with little interest in determining the undistorted pulse shapes. In this paper we develop and apply a method that recovers both the intrinsic pulse shape and the pulse broadening function that describes the scattering of an impulse. The method resembles the CLEAN algorithm used in synthesis imaging applications, although we search for the best pulse broadening function, and perform a true deconvolution to recover intrinsic pulse structre. As figures of merit to optimize the deconvolution, we use the positivity and symmetry of the deconvolved result along with the mean square residual and the number of points below a given threshold. Our method makes no prior assumptions about the intrinsic pulse shape and can be used for a range of scattering functions for the interstellar medium. It can therefore be applied to a wider variety of measured pulse shapes and degrees of scattering than the previous approaches. We apply the technique to both simulated data and data from Arecibo observations.Comment: 9 pages, 6 figures, Accepted for publication in the Astrophysical Journa

    Faraday Rotation Measure Synthesis

    Get PDF
    We extend the rotation measure work of Burn (1966) to the cases of limited sampling of lambda squared space and non-constant emission spectra. We introduce the rotation measure transfer function (RMTF), which is an excellent predictor of n-pi ambiguity problems with the lambda squared coverage. Rotation measure synthesis can be implemented very efficiently on modern computers. Because the analysis is easily applied to wide fields, one can conduct very fast RM surveys of weak spatially extended sources. Difficult situations, for example multiple sources along the line of sight, are easily detected and transparently handled. Under certain conditions, it is even possible to recover the emission as a function of Faraday depth within a single cloud of ionized gas. Rotation measure synthesis has already been successful in discovering widespread, weak, polarized emission associated with the Perseus cluster (De Bruyn and Brentjens, 2005). In simple, high signal to noise situations it is as good as traditional linear fits to polarization angle versus lambda squared plots. However, when the situation is more complex or very weak polarized emission at high rotation measures is expected, it is the only viable option.Comment: 17 pages, 14 figures, accepted by A&A, added references, corrected typo
    corecore