105 research outputs found

    The Roles of Buyang Huanwu Decoction in Anti-Inflammation, Antioxidation and Regulation of Lipid Metabolism in Rats with Myocardial Ischemia

    Get PDF
    Buyang Huanwu Decoction (BYHWD) is a well-known Chinese medicine formula. Recent studies have reported that BYHWD can be used to treat ischemic heart disease. This study investigated the potential mechanism underlying the roles of BYHWD in alleviating the myocardial ischemia induced by isoproterenol (ISO) in rats. Different doses of BYHWD (25.68, 12.84 and 6.42 g kg−1) were lavaged to rats, respectively. Then the expression of the cluster of differentiation 40 (CD40) in the mononuclear cells was measured using flow cytometry, and the expressions of CD40 and its ligand (CD40L) in myocardial tissues were determined by western blotting. The serum biochemical values of superoxide dismutase (SOD) activity, the malondialdehyde (MDA) level and the free fatty acid (FFA) content were measured. The results showed that the SOD activities of BYHWD groups were significantly higher than that of the ISO group, while the MDA levels and FFA contents of all BYHWD groups were lower than that of the ISO group. BYHWD could decrease the expression of CD40 in the mononuclear cells and the CD40 and CD40L expressions in myocardial tissues. Our data suggest that the roles of BYHWD are not only related to its antioxidative action and regulation of lipid metabolisms, but also to the inhibition of inflammatory pathway by the decreased CD40 and CD40L expressions in rats with myocardial ischemia

    Ameliorated ConA-Induced Hepatitis in the Absence of PKC-theta

    Get PDF
    Severe liver injury that occurs when immune cells mistakenly attack an individual's own liver cells leads to autoimmune hepatitis. In mice, acute hepatitis can be induced by concanavalin A (ConA) treatment, which causes rapid activation of CD1d-positive natural killer (NK) T cells. These activated NKT cells produce large amounts of cytokines, which induce strong inflammation that damages liver tissues. Here we show that PKC-θ−/− mice were resistant to ConA-induced hepatitis due to essential function of PKC-θ in NKT cell development and activation. A dosage of ConA (25 mg/kg) that was lethal to wild-type (WT) mice failed to induce death resulting from liver injury in PKC-θ−/− mice. Correspondingly, ConA-induced production of cytokines such as IFNγ, IL-6, and TNFα, which mediate the inflammation responsible for liver injury, were significantly lower in PKC-θ−/− mice. Peripheral NKT cells had developmental defects at early stages in the thymus in PKC-θ−/− mice, and as a result their frequency and number were greatly reduced. Furthermore, PKC-θ−/− bone marrow adoptively transferred to WT mice displayed similar defects in NKT cell development, suggesting an intrinsic requirement for PKC-θ in NKT cell development. In addition, upon stimulation with NKT cell-specific lipid ligand, peripheral PKC-θ−/− NKT cells produced lower levels of inflammatory cytokines than that of WT NKT cells, suggesting that activation of NKT cells also requires PKC-θ. Our results suggest PKC-θ is an essential molecule required for activation of NKT cell to induce hepatitis, and thus, is a potential drug target for prevention of autoimmune hepatitis

    Potential of Core-Collapse Supernova Neutrino Detection at JUNO

    Get PDF
    JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Multifunctional Gomisin B enhances cognitive function in APP/PS1 transgenic mice by regulating Aβ clearance and neuronal apoptosis

    No full text
    This study aimed to investigate the potential effects of Gomisin B, a natural compound known for its inhibition of CYP3A4, on cognitive dysfunction in APP/PS1 transgenic mice with Alzheimer's disease (AD). Additionally, the study explored the combined effects of Gomisin B and Osthole (OST). The research involved male wild-type (WT) mice and 7-month-old APP/PS1 transgenic AD mice. The assessment of behavioral changes included the use of the open field test (OFT) and the Morris water maze (MWM). OST levels in brain tissue were quantified using LC-MS/MS, while levels of oxidative stress were measured through an assay kit. Neuronal apoptosis was studied using Nissl staining, RT-qPCR, and immunofluorescence. Amyloid plaque clearance was assessed using thioflavine-S (Th-S) staining, RT-qPCR, and ELISA. The results of the study revealed that Gomisin B led to a significant improvement in cognitive dysfunction in APP/PS1 mice. Moreover, the simultaneous administration of OST and Gomisin B demonstrated enhanced therapeutic effects. These effects were attributed to the inhibition of β-site APP-Cleaving Enzyme 1 (BACE1) and oxidative stress by Gomisin B, along with its anti-apoptotic properties. The combined use of OST and Gomisin B exhibited a synergistic impact, resulting in more pronounced anti-oxidant and anti-apoptotic effects. In summary, this study pioneers the exploration of Gomisin B's multifunctional anti-AD properties in APP/PS1 mice. The findings provide a solid groundwork for the development of anti-Alzheimer's drugs based on natural active ingredients

    Clematichinenoside (AR) Attenuates Hypoxia/Reoxygenation-Induced H9c2 Cardiomyocyte Apoptosis via a Mitochondria-Mediated Signaling Pathway

    No full text
    Mitochondria-mediated cardiomyocyte apoptosis is involved in myocardial ischemia/reperfusion (MI/R) injury. Clematichinenoside (AR) is a triterpenoid saponin isolated from the roots of Clematis chinensis with antioxidant and anti-inflammatory cardioprotection effects against MI/R injury, yet the anti-apoptotic effect and underlying mechanisms of AR in MI/R injury remain unclear. We hypothesize that AR may improve mitochondrial function to inhibit MI/R-induced cardiomyocyte apoptosis. In this study, we replicated an in vitro H9c2 cardiomyocyte MI/R model by hypoxia/reoxygenation (H/R) treatment. The viability of H9c2 cardiomyocytes was determined by MTT assay; apoptosis was evaluated by flow cytometry and TUNEL experiments; mitochondrial permeability transition pore (mPTP) opening was analyzed by a calcein-cobalt quenching method; and mitochondrial membrane potential (ΔΨm) was detected by JC-1. Moreover, we used western blots to determine the mitochondrial cytochrome c translocation to cytosolic and the expression of caspase-3, Bcl-2, and Bax proteins. These results showed that the application of AR decreased the ratio of apoptosis and the extent of mPTP opening, but increased ΔΨm. AR also inhibited H/R-induced release of mitochondrial cytochrome c and decreased the expression of the caspase-3, Bax proteins. Conversely, it remarkably increased the expression of Bcl-2 protein. Taken together, these results revealed that AR protects H9c2 cardiomyocytes against H/R-induced apoptosis through mitochondrial-mediated apoptotic signaling pathway

    NKT cell development is defective in <i>PKC-θ<sup>−/−</sup></i> mice.

    No full text
    <p>A) Flow cytometric analysis of thymic NKT cells in WT (top panels) and <i>PKC-θ<sup>−/−</sup></i> (bottom panels) mice. Overall CD1d- and CD3-positive NKT cells in thymus were first analyzed (left panels), and the NKT cells were then divided into stage 0 and stage 1–3 based on expression of CD24 (middle panels). Gated Stage 1–3 cells were further analyzed based on CD44 and NK1.1 expression to indicate each of the three stages (right panels). B) Frequency of NKT cells in thymus, stage 0 and stage 1–3 described in A, as averaged from three mice of each genotype. C) Frequency of NKT cells at stages 1, 2 and 3 described in A, as averaged from three mice of each genotype. D) Total NKT cell number in thymus as well as stage 0 and stage 1–3, as averaged from three mice (*, P<0.05; **, P<0.01; ***, P<0.001). E) FACS analysis of PLZF expression in thymic NKT cells. PLZF expression in WT and <i>PKC-θ<sup>−/−</sup></i> NKT cells was analyzed using flow cytometry. F) GeoMean of PLZF expression averaged from 3 independent experiments described in E. G) Lack of PKC-θ does not affect surface CD1d levels on thymocytes. Histogram of CD1d levels of WT (black line) and <i>PKC-θ<sup>−/−</sup></i> (dotted line) thymocytes.</p
    corecore