14 research outputs found

    Monitoring structural influences on quantum transport in InAs nanowires

    Get PDF
    A sample design that allows for quantum transport and transmission electron microscopy (TEM) on individual suspended nanostructures is used to investigate moderately n-type doped InAs nanowires (NWs). The nanowires were grown by metal organic vapor phase epitaxy. Universal conductance fluctuations in the nanowires are investigated at temperatures down to 0.35 K. These fluctuations show two different temperature dependences. The very same nanowire segments investigated in transport are subsequently analyzed by TEM revealing crystal phase mixing. However, we find no correspondence between the atomic structure of the wires and the temperature dependences of the conductance fluctuations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4742326

    Effect of Si-doping on InAs nanowire transport and morphology

    Get PDF
    The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N-2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631026
    corecore