361 research outputs found
Optimization of multi-wavelength Photoplethysmographic for wearable heart rate acquisition
Photoplethysmographic is an optical measure technique for heart rate monitoring on the surface of the skin. PPG based wearable heart rate monitor has become popular in consumer targeted market. This thesis work is based on the PulseOn product development and the final implementation will be integrated into the PulseOn OHRM sensor product.
Choice of the wavelength of PPG is a trade-off between power consumption and accuracy considering the activity type, skin color and skin perfusion. The subject of this thesis is implementing a channel selection algorithm, which is green and IR channel, on a commercially available PulseOn wrist band to optimize the power consumption and accuracy of the measurement. The channel selection algorithm is first implemented and evaluated in Matlab simulation and then implemented in C code.
Performance of the channel selection algorithm on the device is evaluated considering various factors, including skin color, tightness of the wristband. The results show that channel selection algorithm can not only reduce the power consumption but also help to handle the measurement on different measurement conditions
Interpersonal Information Platform Reinforces The Significant Nature of Structure Cost in Latent Terrorist Activities—A Trial of The Biggest IM & Web Portal From China
This paper empirically examines a state to emerge objectively a “structure” characteristic in communicating with each latent terrorist on an Interpersonal Information Platform (IIP), and examines what factors lead to the “structure” characteristic intensified, drawing on two tests that guides the phenomenon of “structure” characteristic in disseminating and sharing of terrorism information through IIP of QQ group and NETEASE web portal from China. The interesting research results are informed of the administering authority could optimize the structure cost and value of posting to adjust the structure characteristic and behavior of posting in order to keep within limits in latent terrorist activities
No miRNA were found in Plasmodium and the ones identified in erythrocytes could not be correlated with infection
<p>Abstract</p> <p>Background</p> <p>The transcriptional regulation of <it>Plasmodium </it>during its complex life cycle requires sequential activation and/or repression of different genetic programmes. MicroRNAs (miRNAs) are a highly conserved class of non-coding RNAs that are important in regulating diverse cellular functions by sequence-specific inhibition of gene expression. What is know about double-stranded RNA-mediated gene silencing (RNAi) and posttranscriptional gene silencing (PTGS) in <it>Plasmodium </it>parasites entice us to speculate whether miRNAs can also function in <it>Plasmodium</it>-infected RBCs.</p> <p>Results</p> <p>Of 132 small RNA sequences, no <it>Plasmodium</it>-specific miRNAs have been found. However, a human miRNA, miR-451, was highly expressed, comprising approximately one third of the total identified miRNAs. Further analysis of miR-451 expression and malaria infection showed no association between the accumulation of miR-451 in <it>Plasmodium falciparum</it>-iRBCs, the life cycle stage of <it>P. falciparum </it>in the erythrocyte, or of <it>P. berghei </it>in mice. Moreover, treatment with an antisense oligonucleotide to miR-451 had no significant effect on the growth of the erythrocytic-stage <it>P. falciparum</it>.</p> <p>Methods</p> <p>Short RNAs from a mixed-stage of <it>P. falciparum</it>-iRBC were separated in a denaturing polyacrylamide gel and cloned into T vectors to create a cDNA library. Individual clones were then sequenced and further analysed by bioinformatics prediction to discover probable miRNAs in <it>P. falciparum</it>-iRBC. The association between miR-451 expression and the parasite were analysed by Northern blotting and antisense oligonucleotide (ASO) of miR-451.</p> <p>Conclusion</p> <p>These results contribute to eliminate the probability of miRNAs in <it>P. falciparum</it>. The absence of miRNA in <it>P. falciparum </it>could be correlated with absence of argonaute/dicer genes. In addition, the miR-451 accumulation in <it>Plasmodium</it>-infected RBCs is independent of parasite infection. Its accumulation might be only the residual of erythroid differentiation or a component to maintain the normal function of mature RBCs.</p
Molecular cloning and characterization of three carnitine palmitoyltransferase (cpt) isoforms from mud crab (Scylla paramamosain) and their roles in respond to fasting and ambient salinity stress
As rate-limiting enzymes of β-oxidation of fatty acids in mitochondria, the carnitine palmitoyltransferase (CPT) played an important role in regulating energy homeostasis of aquatic animals. However, there was very little research on β-oxidation of fatty acids in crustaceans. In the present study, the full-length cDNA sequences of cpt-1a, cpt-1b and cpt-2 were isolated from the hepatopancreas of Scylla paramamosain, and contained 4206, 5303 and 3486 bp respectively. Sequence analysis showed that the CPT-1A, CPT-1B and CPT-2 encoded proteins with 777, 775 and 672 amino acids respectively, and only the CPT-1A possessed a transmembrane region. In addition, both the CPT-1B and CPT-2 contained conservative functional domains like N-terminal domain and acyltransferases choActase 2, while the CPT-1A lacked. The results of phylogenetic tree indicated that the CPT-1A, CPT-1B and CPT-2 of S. paramamosain gathered together with their corresponding orthologues from crustaceans. The tissue distribution exhibited that the cpt-1a was highly expressed in hepatopancreas, followed by muscle, eyestalk and cranial ganglia, and the muscle, eyestalk and heart were main expressed tissues of cpt-1b. Furthermore, the high expression levels of cpt-2 were mainly detected in hepatopancreas, muscle and heart. The transcriptional levels of cpt-1a, cpt-1b and cpt-2 were significantly up-regulated under chronic low salinity stress. Besides, at the acute low salinity stress condition, the expression levels of cpt-1a, cpt-1b and cpt-2 in hepatopancreas were dramatically increased in 14‰ and 4‰ salinity groups at the 6h and 48h, while the transcriptional levels of cpt-1a, cpt-1b and cpt-2 in muscle were signally up-regulated in 14‰ and 4‰ salinity groups at the 12h and 24h, showing an alternate response pattern. Similarly, the present study found that fasting could markedly increase the expression levels of cpt-1a, cpt-1b and cpt-2 in hepatopancreas and muscle, especially cpt-1a in hepatopancreas as well as cpt-1a and cpt-1b in muscle. The results above indicated that the cpt-1a, cpt-1b and cpt-2 played a crucial part in providing energy for coping with fasting and salinity stress. These results would contribute to enhancing the knowledge of cpt phylogenetic evolution and their roles in energy metabolism of crustaceans
Research on a symmetric non-resonant piezoelectric linear motor
Nowadays, piezoelectric linear actuators draw wide attention of researchers around world as its advantages of simple structure, high precision and rapid response. To improve the performance of the non-resonant piezoelectric motor, a symmetric piezoelectric linear motor driven by double-foot is studied in the paper. The vibration model of the stator is established based on the structure and the working mechanism of motor. Then guide mechanism and preload device is designed and a prototype is fabricated to verify the feasibility of structure. The performances of motor under different driving signal are tested in experiment. By applying three-phase square-triangular waves signal and four-phase sine waves signal of peak to peak value 100Â V with 50Â V offset and frequency of 100 Hz, the speed of prototype reaches 733Â ÎĽm/s and 667Â ÎĽm/s and the maximum thrust is 8.34Â N and 6.31Â N respectively
Follicular thyroid carcinoma but not adenoma recruits tumor-associated macrophages by releasing CCL15
Immunostain of CD68 in entire tissue of FTC/FA samples. (A) An example of immunohistochemistry analysis of CD68 in whole tissue samples of FTC (left panel) and FA (right panel). Stars indicated blank areas were taked out for tissue microarrays constructing. CD68+ cells in ten 200 μm *300 μm areas (green-red marked) of every sample were counted. Bar = 1 mm. (B) Enlarged picture of one count area (one green-red area in A). Arrows indicate the CD68+ macrophages in FTC (left panel) or FA (right panel). Bar = 20 μm. Figure S2. Densities of CD206+ cells in FTC are significantly higher than those in FA. Immunohistochemistry analysis of CD206 in 55 cases of tissue samples from FTC and FA patients. Arrows indicate the CD206+ macrophages. Bar = 20 μm. (PDF 509 kb
Cloning and expression characterization of elongation of very long-chain fatty acids protein 6 (elovl6) with dietary fatty acids, ambient salinity and starvation stress in Scylla paramamosain
Introduction: Elongation of very long-chain fatty acids protein 6 (ELOVL6) played crucial roles in regulating energy expenditure and fatty acid metabolism. Many studies have performed to investigate the physiological roles and regulatory mechanisms of elovl6 in fish and animals, while few studies were reported in crustaceans.Methods: Here we reported on the molecular cloning, tissue distribution and expression profiles in response to dietary fatty acids, ambient salinity and starvation stress in Scylla paramamosain by using rapid amplification of cDNA ends (RACE) and quantitative real-time PCR.Results: Three elovl6 isoforms (named elovl6a, elovl6b and elovl6c) were isolated from S. paramamosain in the present study. The complete sequence of elovl6a was 1345 bp, the full-length sequence of elovl6b was 1419 bp, and the obtained elovl6c sequence was 1375 bp in full length. The elovl6a, elovl6b and elovl6c encoded 287, 329 and 301 amino acids respectively, and exhibited the typical structural features of ELOVL protein family members. Phylogenetic analysis showed that the ELOVL6a from S. paramamosain clustered most closely to ELOVL6 from Portunus trituberculatus and Eriocheir sinensis, while the ELOVL6b and ELOVL6c from S. paramamosain gathered alone into a single branch. Quantitative real-time PCR exhibited that the relatively abundant expression of elovl6b was observed in intestine and stomach, and the elovl6a and elovl6c were highly expressed in hepatopancreas. In addition, studies found that replacing fish oil with soybean oil could significantly increase the transcriptional levels of three elovl6 in hepatopancreas of S. paramamosain, and the expression of elovl6a and elovl6c in hepatopancreas were more sensitive to dietary fatty acids than the elovl6b. Compared with the normal sea water group (27‰), the expression of sterol-regulatory element binding protein1c (srebp-1), elovl6a, elovl6b and elovl6c were upregulated in the low salinity groups, particularly in 7‰. On the contrary, the starvation stress suppressed the expression of srebp-1, elovl6a, elovl6b and elovl6c.Discussion: These results may contribute to understand the functions of elovl6 in fatty acid synthesis and regulatory mechanisms in crustaceans
Preliminary investigation of the diagnosis and gene function of deep learning PTPN11 gene mutation syndrome deafness
Syndromic deafness caused by PTPN11 gene mutation has gradually come into the public’s view. In the past, many people did not understand its application mechanism and role and only focused on non-syndromic deafness, so the research on syndromic deafness is not in-depth and there is a large degree of lack of research in this area. In order to let the public know more about the diagnosis and gene function of deafness caused by PTPN11 gene mutation syndrome, this paper used deep learning technology to study the diagnosis and gene function of deafness caused by syndrome with the concept of intelligent medical treatment, and finally drew a feasible conclusion. This paper provided a theoretical and practical basis for the diagnosis of deafness caused by PTPN11 gene mutation syndrome and the study of gene function. This paper made a retrospective analysis of the clinical data of 85 deaf children who visited Hunan Children’s Hospital,P.R. China from January 2020 to December 2021. The conclusion were as follows: Children aged 1–6 years old had multiple syndrome deafness, while children under 1 year old and children aged 6–12 years old had relatively low probability of complex deafness; girls were not easy to have comprehensive deafness, but there was no specific basis to prove that the occurrence of comprehensive deafness was necessarily related to gender; the hearing loss of patients with Noonan Syndrome was mainly characterized by moderate and severe damage and abnormal inner ear and auditory nerve; most of the mutation genes in children were located in Exon1 and Exon3, with a total probability of 57.65%. In the course of the experiment, it was found that deep learning was effective in the diagnosis of deafness with PTPN11 gene mutation syndrome. This technology could be applied to medical diagnosis to facilitate the diagnosis and treatment of more patients with deafness with syndrome. Intelligent medical treatment was also becoming a hot topic nowadays. By using this concept to analyze and study the pathological characteristics of deafness caused by PTPN11 gene mutation syndrome, it not only promoted patients to find diseases in time, but also helped doctors to diagnose and treat such diseases, which was of great significance to patients and doctors. The study of PTPN11 gene mutation syndrome deafness was also of great significance in genetics. The analysis of its genes not only enriched the gene pool, but also provided reference for future research
- …