17,833 research outputs found
Recirculation patterns in the initial region of coaxial jets
Initial region study of turbulent coaxial jet flo
Experimental investigation of turbulence in the mixing region between coaxial streams
Mixing of turbulent, incompressible, coaxial stream
Stability of shear flow with density gradient and viscosity
Stability of shear flow with density gradient and viscosit
Demonstration of ultra-high-Q small mode volume toroid microcavities on a chip
Optical microcavities confine light spatially and temporally and find
application in a wide range of fundamental and applied studies. In many areas,
the microcavity figure of merit is not only determined by photon lifetime (or
the equivalent quality-factor, Q), but also by simultaneous achievement of
small mode volume V . Here we demonstrate ultra-high Q-factor small mode volume
toroid microcavities on-a-chip, which exhibit a Q/V factor of more than
. These values are the highest reported to date for any
chip-based microcavity. A corresponding Purcell factor in excess of 200 000 and
a cavity finesse of is achieved, demonstrating that toroid
microcavities are promising candidates for studies of the Purcell effect,
cavity QED or biochemical sensingComment: 4 pages, 3 figures, Submitted to Applied Physics Letter
Template-based Gravitational-Wave Echoes Search Using Bayesian Model Selection
The ringdown of the gravitational-wave signal from a merger of two black
holes has been suggested as a probe of the structure of the remnant compact
object, which may be more exotic than a black hole. It has been pointed out
that there will be a train of echoes in the late-time ringdown stage for
different types of exotic compact objects. In this paper, we present a
template-based search methodology using Bayesian statistics to search for
echoes of gravitational waves. Evidence for the presence or absence of echoes
in gravitational-wave events can be established by performing Bayesian model
selection. The Occam factor in Bayesian model selection will automatically
penalize the more complicated model that echoes are present in
gravitational-wave strain data because of its higher degree of freedom to fit
the data. We find that the search methodology was able to identify
gravitational-wave echoes with Abedi et al.'s echoes waveform model about 82.3%
of the time in simulated Gaussian noise in the Advanced LIGO and Virgo network
and about 61.1% of the time in real noise in the first observing run of
Advanced LIGO with significance. Analyses using this method are
performed on the data of Advanced LIGO's first observing run, and we find no
statistical significant evidence for the detection of gravitational-wave
echoes. In particular, we find combined evidence of the three events
in Advanced LIGO's first observing run. The analysis technique developed in
this paper is independent of the waveform model used, and can be used with
different parametrized echoes waveform models to provide more realistic
evidence of the existence of echoes from exotic compact objects.Comment: 16 pages, 6 figure
Quilted Floer Cohomology
We generalize Lagrangian Floer cohomology to sequences of Lagrangian
correspondences. For sequences related by the geometric composition of
Lagrangian correspondences we establish an isomorphism of the Floer
cohomologies. We give applications to calculations of Floer cohomology,
displaceability of Lagrangian correspondences, and transfer of displaceability
under geometric composition.Comment: minor corrections and updated reference
Hamiltonian systems with symmetry, coadjoint orbits and plasma physics
The symplectic and Poisson structures on reduced phase spaces are reviewed, including the symplectic structure on coadjoint orbits of a Lie group and the Lie-Poisson structure on the dual of a Lie algebra. These results are
applied to plasma physics. We show in three steps how the Maxwell-Vlasov equations for a collisionless plasma can be written in Hamiltonian form relative to a certain Poisson bracket. First, the Poisson-Vlasov equations are shown
to be in Hamiltonian form relative to the Lie-Poisson bracket on the dual of the (nite dimensional) Lie algebra of innitesimal canonical transformations. Then we write Maxwell's equations in Hamiltonian form using the canonical
symplectic structure on the phase space of the electromagnetic elds, regarded as a gauge theory. In the last step we couple these two systems via the reduction
procedure for interacting systems. We also show that two other standard models in plasma physics, ideal MHD and two-
uid electrodynamics, can be written in Hamiltonian form using similar group theoretic techniques
On Deusons or Deuteronlike Meson-Meson Bound States
The systematics of deuteronlike two-meson bound states, {\it deusons}, is
discussed. Previous arguments that many of the present non- states are
such states are elaborated including, in particular, the tensor potential. For
pseudoscalar states the important observation is made that the centrifugal
barrier from the P-wave can be overcome by the and terms of the
tensor potential. In the heavy meson sector one-pion exchange alone is strong
enough to form at least deuteron-like and composites
bound by approximately 50 MeV, while and states are
expected near the threshold.Comment: Invited talk at the Hadron93 International Conf. on Hadron
Spectroscopy, Como, Italy 22.-25.6. 1993. 5 pages in LATEX HU-SEFT R 1993-13
Research on solar pumped liquid lasers
A solar pumped liquid laser that can be scaled up to high power (10Mw CW) for space applications was developed. Liquid lasers have the inherent advantage over gases in that they provide much higher lasant densities and thus high power densities. Liquids also have inherent advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13:Nd(3+):ZrC14 liquid was chosen for its high intrinsic efficiency as well as its relatively good stability against decomposition due to protic contamination. The development and testing of the laser liquid and the development of a large solar concentrator to pump the laser was emphasized. The procedure to manufacture the laser liquid must include diagnostic tests of the solvent purity (from protic contamination) at various stages in the production process
Research on solar pumped liquid lasers
A solar pumped liquid laser that can be scaled up to high power (10 mW CW) for space applications was developed. Liquid lasers have the advantage over gases in that they provide much higher lasant densities and thus high-power densities. Liquids also have advantages over solids in that they have much higher damage thresholds and are much cheaper to produce for large scale applications. Among the liquid laser media that are potential candidates for solar pumping, the POC13: Nd sup 3+:ZrC14 liquid was chosen for its high intrinsic efficiency and its relatively good stability against decomposition due to protic contamination. The development of a manufacturing procedure and performance testing of the laser, liquid and the development of an inexpensive large solar concentrator to pump the laser are examined
- …
