943 research outputs found
Recommended from our members
A utility survey and market assessment on repowering in the electric power industry
Section 1 of this report provides a background about the DOE High Performance Power Systems (HIPPS) program. There are two kinds of HIPPS cycles under development. One team is led by the Foster Wheeler Development Corporation, the other team is led by the United Technologies Research Center. These cycles are described. Section 2 summarizes the feedback from the survey of the repowering needs of ten electric utility companies. The survey verified that the utility company planners favor a repowering for a first-of-a-kind demonstration of a new technology rather than an all-new-site application. These planners list the major factor in considering a unit as a repowering candidate as plant age: they identify plants built between 1955 and 1965 as the most likely candidates. Other important factors include the following: the need to reduce operating costs; the need to perform major maintenance/replacement of the boiler; and the need to reduce emissions. Section 3 reports the results of the market assessment. Using the size and age preferences identified in the survey, a market assessment was conducted (with the aid of a power plant data base) to estimate the number and characteristics of US generating units which constitute the current, primary potential market for coal-based repowering. Nearly 250 units in the US meet the criteria determined to be the potential repowering market
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states II: calculation of the glueball spectrum
In the preceding paper, a rigorous three-dimensional relativistic equation
for two-gluon bound states was derived from the QCD with massive gluons and
represented in the angular momentum representation. In order to apply this
equation to calculate the glueball spectrum, in this paper, the equation is
recast in an equivalent three-dimensional relativistic equation satisfied by
the two-gluon positive energy state amplitude. The interaction Hamiltonian in
the equation is exactly derived and expressed as a perturbative series. The
first term in the series describes the one-gluon exchange interaction which
includes fully the retardation effect in it. This term plus the linear
confining potential are chosen to be the interaction Hamiltonian and employed
in the practical calculation. With the integrals containing three and four
spherical Bessel functions in the QCD vertices being analytically calculated,
the interaction Hamiltonian is given an explicit expression in the angular
momentum representation. Numerically solving the relativistic equation with
taking the contributions arising from the retardation effect and the
longitudinal mode of gluon fields into account, a set of masses for the
and glueball states are
obtained and are in fairly good agreement with the predictions given by the
lattice simulatio
Molecular vibration in cold collision theory
Cold collisions of ground state oxygen molecules with Helium have been
investigated in a wide range of cold collision energies (from 1 K up to 10
K) treating the oxygen molecule first as a rigid rotor and then introducing the
vibrational degree of freedom. The comparison between the two models shows that
at low energies the rigid rotor approximation is very accurate and able to
describe all the dynamical features of the system. The comparison between the
two models has also been extended to cases where the interaction potential He -
O is made artificially stronger. In this case vibration can perturb rate
constants, but fine-tuning the rigid rotor potential can alleviate the
discrepancies between the two models.Comment: 11 pages, 3 figure
THE INTERPLAY OF THE K+K- ATOM AND THE f_0(975) RESONANCE
We predict that production of the K+K- atom in pd-3^HeX and similar reactions
exhibits a drastic missing mass spectrum due to the interplay with f_0(975)
resonance. We point out that high precision studies of the K+K- atom may shed a
new light on the nature of f_0(975).Comment: 13 page
Hadron resonances generated from the dynamics of the lightest scalar ones
We have studied the interactions of the scalar resonances f_0(980) and
a_0(980) with the vector resonance \phi(1020) and with the lightest
pseudoscalars \pi, K, \eta and \eta'. We first obtain the interaction kernels
without including any new free parameter. Afterwards, the interaction kernels
are unitarized and the final S-wave amplitudes result. We find that these
interactions are very rich and generate a large amount of pseudoscalar
resonances including the K(1460), \pi(1300), \pi(1800), \eta(1475) and X(1835)
resonances. The f_0(980)\phi(1020) self-interactions give rise to the
\phi(2170) resonance. For realistic choices of the parameters we also obtain an
isovector companion in the same mass region from the a_0(980) \phi(1020)
interactions.Comment: 4 pafes, 4 figures. Invited talk at QCD 10 (25th anniversary), 15th
International QCD Conference, 28th June - 3rd July 2010 Montpellier (France).
To be published in Nucl. Phys. B (Proc. Suppl.
No Dynamics in the Extremal Kerr Throat
Motivated by the Kerr/CFT conjecture, we explore solutions of vacuum general
relativity whose asymptotic behavior agrees with that of the extremal Kerr
throat, sometimes called the Near-Horizon Extreme Kerr (NHEK) geometry. We
argue that all such solutions are diffeomorphic to the NHEK geometry itself.
The logic proceeds in two steps. We first argue that certain charges must
vanish at all times for any solution with NHEK asymptotics. We then analyze
these charges in detail for linearized solutions. Though one can choose the
relevant charges to vanish at any initial time, these charges are not
conserved. As a result, requiring the charges to vanish at all times is a much
stronger condition. We argue that all solutions satisfying this condition are
diffeomorphic to the NHEK metric.Comment: 42 pages, 3 figures. v3: minor clarifications and correction
Glueball spectrum based on a rigorous three-dimensional relativistic equation for two-gluon bound states I: Derivation of the relativistic equation
A rigorous three-dimensional relativistic equation satisfied by two-gluon
bound states is derived from the QCD with massive gluons. With the gluon fields
and the quark fields being expanded in terms of the gluon multipole fields and
the spherical Dirac spinors respectively, the equation is well established in
the angular momentum representation and hence is much convenient for solving
the problem of two-gluon glueball spectra. In particular, the interaction
kernel in the equation is exactly derived and given a closed expression which
includes all the interactions taking place in the two-gluon glueballs. The
kernel contains only a few types of Green's functions and commutators.
Therefore, it is not only easily calculated by the perturbation method, but
also provides a suitable basis for nonperturbative investigations
Coupled-mode equations and gap solitons in a two-dimensional nonlinear elliptic problem with a separable periodic potential
We address a two-dimensional nonlinear elliptic problem with a
finite-amplitude periodic potential. For a class of separable symmetric
potentials, we study the bifurcation of the first band gap in the spectrum of
the linear Schr\"{o}dinger operator and the relevant coupled-mode equations to
describe this bifurcation. The coupled-mode equations are derived by the
rigorous analysis based on the Fourier--Bloch decomposition and the Implicit
Function Theorem in the space of bounded continuous functions vanishing at
infinity. Persistence of reversible localized solutions, called gap solitons,
beyond the coupled-mode equations is proved under a non-degeneracy assumption
on the kernel of the linearization operator. Various branches of reversible
localized solutions are classified numerically in the framework of the
coupled-mode equations and convergence of the approximation error is verified.
Error estimates on the time-dependent solutions of the Gross--Pitaevskii
equation and the coupled-mode equations are obtained for a finite-time
interval.Comment: 32 pages, 16 figure
Vertical stratification in urban green space aerobiomes
Background:
Exposure to a diverse environmental microbiome is thought to play an important role in “educating” the immune system and facilitating competitive exclusion of pathogens to maintain human health. Vegetation and soil are key sources of airborne microbiota––the aerobiome. A limited number of studies have attempted to characterize the dynamics of near surface green space aerobiomes, and no studies to date have investigated these dynamics from a vertical perspective. Vertical stratification in the aerobiome could have important implications for public health and for the design, engineering, and management of urban green spaces.
Objectives:
The primary objectives of this study were to: a) assess whether significant vertical stratification in bacterial species richness and evenness (alpha diversity) of the aerobiome occurred in a parkland habitat in Adelaide, South Australia; b) assess whether significant compositional differences (beta diversity) between sampling heights occurred; and c) to preliminarily assess whether there were significant altitudinal differences in potentially pathogenic and beneficial bacterial taxa.
Methods:
We combined an innovative columnar sampling method at soil level, 0.0, 0.5, 1.0, and 2.0m, using passive petri dish sampling to collect airborne bacteria. We used a geographic information system (GIS) to select study sites, and we used high-throughput sequencing of the bacterial 16S rRNA gene to assess whether significant vertical stratification of the aerobiome occurred.
Results:
Our results provide evidence of vertical stratification in both alpha and beta (compositional) diversity of airborne bacterial communities, with diversity decreasing roughly with height. We also found significant vertical stratification in potentially pathogenic and beneficial bacterial taxa.
Discussion:
Although additional research is needed, our preliminary findings point to potentially different exposure attributes that may be contingent on human height and activity type. Our results lay the foundations for further research into the vertical characteristics of urban green space aerobiomes and their implications for public health and urban planning
Field-linked States of Ultracold Polar Molecules
We explore the character of a novel set of ``field-linked'' states that were
predicted in [A. V. Avdeenkov and J. L. Bohn, Phys. Rev. Lett. 90, 043006
(2003)]. These states exist at ultralow temperatures in the presence of an
electrostatic field, and their properties are strongly dependent on the field's
strength. We clarify the nature of these quasi-bound states by constructing
their wave functions and determining their approximate quantum numbers. As the
properties of field-linked states are strongly defined by anisotropic dipolar
and Stark interactions, we construct adiabatic surfaces as functions of both
the intermolecular distance and the angle that the intermolecular axis makes
with the electric field. Within an adiabatic approximation we solve the 2-D
Schrodinger equation to find bound states, whose energies correlate well with
resonance features found in fully-converged multichannel scattering
calculations
- …