2 research outputs found

    Capacity of deep‐sea corals to obtain nutrition from cold seeps aligned with microbiome reorganization

    Get PDF
    Cold seeps in the deep sea harbor various animals that have adapted to utilize seepage chemicals with the aid of chemosynthetic microbes that serve as primary producers. Corals are among the animals that live near seep habitats and yet, there is a lack of evidence that corals gain benefits and/or incur costs from cold seeps. Here, we focused on Callogorgia delta and Paramuricea sp. type B3 that live near and far from visual signs of currently active seepage at five sites in the deep Gulf of Mexico. We tested whether these corals rely on chemosynthetically-derived food in seep habitats and how the proximity to cold seeps may influence; (i) coral colony traits (i.e., health status, growth rate, regrowth after sampling, and branch loss) and associated epifauna, (ii) associated microbiome, and (iii) host transcriptomes. Stable isotope data showed that many coral colonies utilized chemosynthetically derived food, but the feeding strategy differed by coral species. The microbiome composition of C. delta, unlike Paramuricea sp., varied significantly between seep and non-seep colonies and both coral species were associated with various sulfur-oxidizing bacteria (SUP05). Interestingly, the relative abundances of SUP05 varied among seep and non-seep colonies and were strongly correlated with carbon and nitrogen stable isotope values. In contrast, the proximity to cold seeps did not have a measurable effect on gene expression, colony traits, or associated epifauna in coral species. Our work provides the first evidence that some corals may gain benefits from living near cold seeps with apparently limited costs to the colonies. Cold seeps provide not only hard substrate but also food to cold-water corals. Furthermore, restructuring of the microbiome communities (particularly SUP05) is likely the key adaptive process to aid corals in utilizing seepage-derived carbon. This highlights that those deep-sea corals may upregulate particular microbial symbiont communities to cope with environmental gradients

    Natural variability in seawater temperature compromises the metabolic performance of a reef-forming cold-water coral with implications for vulnerability to ongoing global change

    No full text
    13 pages, 5 figures, 3 tablesSeawater temperature is one of the main variables that determines cold-water coral distribution worldwide. As part of an initiative to explore new areas of deep-sea habitats along the Southeast United States (SEUS) continental margin, a series of expeditions were carried out as part of the Deep-Sea Exploration to Advance Research on Corals/Canyons/Cold seeps (DEEP SEARCH) project. During these explorations, a cold-water coral reef complex composed mainly of Lophelia pertusa was located off the coast of South Carolina at 650–850 m depth. In this geographic area the species normally has a thermal tolerance between 6 and 12 °C with the capacity to form extensive calcium carbonate structures, thus creating complex habitat for a variety of associated species. Owing to the paucity of these structures and the unusual environmental conditions of this geographic area, with regular arrival of warm surface waters from the Gulf Stream, the main aim of this study was to understand the physiological response of L. pertusa to the variation in extreme temperature events in this region. Short-term experiments simulated the rate of temperature increase from the ambient temperature (8 °C) to the environmental maximum (14 °C) (heat-wave treatment). We found that temperature had a significant effect on the metabolic functions through an increase in respiration (0.108 to 0.247 ”mol O2 g−1DW h−1) and excretion rates (0.002 to 0.011 ”mol NH3 g−1DW h−1) at 14 °C. Oxygen to Nitrogen ratios (O:N) also showed an effect of temperature where corals switched from lipid-dominated toward a mix of lipid-protein and protein-dominated catabolism. To further characterize the metabolic response, feeding assays (capture rate of Artemia) were performed at the same temperature range with an overall three-fold decrease in capture rates under 14 °C compared to ambient temperature, thus increasing the probability of temperature-induced metabolic stress. Our results suggest that temperature variations affect the metabolic response of cold-water corals, particularly along the SEUS continental margin. Since the incursion of warm surface water to deeper zones is predicted to increase in frequency and duration due to climate change, L. pertusa may be implicated negatively, followed by ecological consequences for the survival and functionality for the ecosystem it supportsThis work was supported by the National Oceanographic Partnership Program with funding from the Bureau of Ocean Energy Management (contract M17PC00009 to TDI Brooks International), the U.S. Geological Survey, and the NOAA Office of Ocean Exploration and Research (for ship time). Additional support comes from the NOAA Deep-Sea Coral Research and Technology Program. [...] CEG acknowledge financial support from the Fulbright-Colciencias Doctoral Scholarship Program (568-2012), and the Doctoral Dissertation Grant from Temple University. AG acknowledge financial support from a Juan de la Cierva 2015 research grant (IJCI-2015-23962) from the Spanish governmentWith the institutional support of the ‘Severo Ochoa Centre of Excellence’ accreditation (CEX2019-000928-S)Peer reviewe
    corecore