986 research outputs found

    A Circuit Model for Domain Walls in Ferromagnetic Nanowires: Application to Conductance and Spin Transfer Torques

    Full text link
    We present a circuit model to describe the electron transport through a domain wall in a ferromagnetic nanowire. The domain wall is treated as a coherent 4-terminal device with incoming and outgoing channels of spin up and down and the spin-dependent scattering in the vicinity of the wall is modelled using classical resistances. We derive the conductance of the circuit in terms of general conductance parameters for a domain wall. We then calculate these conductance parameters for the case of ballistic transport through the domain wall, and obtain a simple formula for the domain wall magnetoresistance which gives a result consistent with recent experiments. The spin transfer torque exerted on a domain wall by a spin-polarized current is calculated using the circuit model and an estimate of the speed of the resulting wall motion is made.Comment: 10 pages, 5 figures; submitted to Physical Review

    Disorder-induced enhancement of the persistent current for strongly interacting electrons in one-dimensional rings

    Full text link
    We show that disorder increases the persistent current of a half-filled one-dimensional Hubbard-Anderson ring at strong interaction. This unexpected effect results from a perturbative expansion starting from the strongly interacting Mott insulator ground state. The analytical result is confirmed and extended by numerical calculations.Comment: 7 pages, 2 figures, LaTeX, using epl.cls (included), considerably revised final versio

    Electron Transport through Disordered Domain Walls: Coherent and Incoherent Regimes

    Full text link
    We study electron transport through a domain wall in a ferromagnetic nanowire subject to spin-dependent scattering. A scattering matrix formalism is developed to address both coherent and incoherent transport properties. The coherent case corresponds to elastic scattering by static defects, which is dominant at low temperatures, while the incoherent case provides a phenomenological description of the inelastic scattering present in real physical systems at room temperature. It is found that disorder scattering increases the amount of spin-mixing of transmitted electrons, reducing the adiabaticity. This leads, in the incoherent case, to a reduction of conductance through the domain wall as compared to a uniformly magnetized region which is similar to the giant magnetoresistance effect. In the coherent case, a reduction of weak localization, together with a suppression of spin-reversing scattering amplitudes, leads to an enhancement of conductance due to the domain wall in the regime of strong disorder. The total effect of a domain wall on the conductance of a nanowire is studied by incorporating the disordered regions on either side of the wall. It is found that spin-dependent scattering in these regions increases the domain wall magnetoconductance as compared to the effect found by considering only the scattering inside the wall. This increase is most dramatic in the narrow wall limit, but remains significant for wide walls.Comment: 23 pages, 12 figure

    Transformation of Morphology and Luminosity Classes of the SDSS Galaxies

    Full text link
    We present a unified picture on the evolution of galaxy luminosity and morphology. Galaxy morphology is found to depend critically on the local environment set up by the nearest neighbor galaxy in addition to luminosity and the large scale density. When a galaxy is located farther than the virial radius from its closest neighbor, the probability for the galaxy to have an early morphological type is an increasing function only of luminosity and the local density due to the nearest neighbor (ρn\rho_n). The tide produced by the nearest neighbor is thought to be responsible for the morphology transformation toward the early type at these separations. When the separation is less than the virial radius, i.e. when ρn>ρvirial\rho_n > \rho_{\rm virial}, its morphology depends also on the neighbor's morphology and the large-scale background density over a few Mpc scales (ρ20\rho_{20}) in addition to luminosity and ρn\rho_n. The early type probability keeps increasing as ρn\rho_n increases if its neighbor is an early type. But the probability decreases as ρn\rho_n increases when the neighbor is a late type. The cold gas streaming from the late type neighbor can be the reason for the morphology transformation toward late type. The overall early-type fraction increases as ρ20\rho_{20} increases when ρn>ρvirial\rho_n > \rho_{\rm virial}. This can be attributed to the hot halo gas of the neighbor which is confined by the pressure of the ambient medium held by the background mass. We have also found that galaxy luminosity depends on ρn\rho_n, and that the isolated bright galaxies are more likely to be recent merger products. We propose a scenario that a series of morphology and luminosity transformation occur through distant interactions and mergers, which results in the morphology--luminosity--local density relation.Comment: 14 pages, 7 figures, for higher resolution figures download PDF file at http://astro.kias.re.kr/docs/trans.pdf ; references added and typos in section 3.2 corrected; Final version accepted for publication in Ap

    Lifetime of the first and second collective excitations in metallic nanoparticles

    Full text link
    We determine the lifetime of the surface plasmon in metallic nanoparticles under various conditions, concentrating on the Landau damping, which is the dominant mechanism for intermediate-size particles. Besides the main contribution to the lifetime, which smoothly increases with the size of the particle, our semiclassical evaluation yields an additional oscillating component. For the case of noble metal particles embedded in a dielectric medium, it is crucial to consider the details of the electronic confinement; we show that in this case the lifetime is determined by the shape of the self-consistent potential near the surface. Strong enough perturbations may lead to the second collective excitation of the electronic system. We study its lifetime, which is limited by two decay channels: Landau damping and ionization. We determine the size dependence of both contributions and show that the second collective excitation remains as a well defined resonance.Comment: 18 pages, 5 figures; few minor change

    Embedding method for the scattering phase in strongly correlated quantum dots

    Full text link
    The embedding method for the calculation of the conductance through interacting systems connected to single channel leads is generalized to obtain the full complex transmission amplitude that completely characterizes the effective scattering matrix of the system at the Fermi energy. We calculate the transmission amplitude as a function of the gate potential for simple diamond-shaped lattice models of quantum dots with nearest neighbor interactions. In our simple models we do not generally observe an interaction dependent change in the number of zeroes or phase lapses that depend only on the symmetry properties of the underlying lattice. Strong correlations separate and reduce the widths of the resonant peaks while preserving the qualitative properites of the scattering phase.Comment: 11 pages, 3 figures. Proceedings of the Workshop on Advanced Many-Body and Statistical Methods in Mesoscopic Systems, Constanta, Romania, June 27th - July 2nd 2011. To appear in Journal of Physics: Conference Serie

    Critical spectral statistics in two-dimensional interacting disordered systems

    Full text link
    The effect of Coulomb and short-range interactions on the spectral properties of two-dimensional disordered systems with two spinless fermions is investigated by numerical scaling techniques. The size independent universality of the critical nearest level-spacing distribution P(s)P(s) allows one to find a delocalization transition at a critical disorder WcW_{\rm c} for any non-zero value of the interaction strength. At the critical point the spacings distribution has a small-ss behavior Pc(s)sP_c(s)\propto s, and a Poisson-like decay at large spacings.Comment: 4 two-column pages, 3 eps figures, RevTeX, new results adde

    A 4D Light-Field Dataset and CNN Architectures for Material Recognition

    Full text link
    We introduce a new light-field dataset of materials, and take advantage of the recent success of deep learning to perform material recognition on the 4D light-field. Our dataset contains 12 material categories, each with 100 images taken with a Lytro Illum, from which we extract about 30,000 patches in total. To the best of our knowledge, this is the first mid-size dataset for light-field images. Our main goal is to investigate whether the additional information in a light-field (such as multiple sub-aperture views and view-dependent reflectance effects) can aid material recognition. Since recognition networks have not been trained on 4D images before, we propose and compare several novel CNN architectures to train on light-field images. In our experiments, the best performing CNN architecture achieves a 7% boost compared with 2D image classification (70% to 77%). These results constitute important baselines that can spur further research in the use of CNNs for light-field applications. Upon publication, our dataset also enables other novel applications of light-fields, including object detection, image segmentation and view interpolation.Comment: European Conference on Computer Vision (ECCV) 201

    Critical Spectral Statistics at the Metal-Insulator Transition in Interacting Fermionic Systems

    Full text link
    The spectral properties of a disordered system with few interacting three-dimensional spinless fermions are investigated. We show the existence of a critical spacings distribution which is invariant upon increase of the system size, but strongly depends on the number of particles. At the critical point, we report a substantial decrease of the degree of level repulsion as the number of particles increases indicating a decrease of nearest level correlations associated with the sparsity of the Hamiltonian matrix.Comment: Revtex, 4 pages, 3 encapsulated postscript figures appended Final version as accepted for publication in PR

    Spin-dependent dipole excitation in alkali-metal nanoparticles

    Full text link
    We study the spin-dependent electronic excitations in alkali-metal nanoparticles. Using numerical and analytical approaches, we focus on the resonances in the response to spin-dependent dipole fields. In the spin-dipole absorption spectrum for closed-shell systems, we investigate in detail the lowest-energy excitation, the "surface paramagnon" predicted by L. Serra et al. [Phys. Rev. A 47, R1601 (1993)]. We estimate its frequency from simple assumptions for the dynamical magnetization density. In addition, we numerically determine the dynamical magnetization density for all low-energy spin-dipole modes in the spectrum. Those many-body excitations can be traced back to particle-hole excitations of the noninteracting system. Thus, we argue that the spin-dipole modes are not of collective nature. In open-shell systems, the spin-dipole response to an electrical dipole field is found to increase proportionally with the ground-state spin polarization.Comment: 12 pages, 9 figure
    corecore