35 research outputs found

    Assessing bilateral ankle proprioceptive acuity in stroke survivors:An exploratory study

    Get PDF
    BACKGROUND: Bilateral proprioception deficits were reported in stroke survivors. However, whether bilateral proprioception deficits exist in the ankle joint after stroke was unclear. Ankle proprioception is a significant predictor of balance dysfunction after stroke, and previous studies to date are lacking appropriate evaluation methods. OBJECTIVES: We want to determine whether the active movement extent discrimination apparatus (AMEDA) is a reliable tool for assessing ankle proprioceptive acuity in stroke survivors and the presence of deficits in ankle proprioception on the affected and unaffected sides in patients after stroke. METHODS: Bilateral ankle proprioception was assessed in 20 stroke patients and 20 age-matched healthy controls using AMEDA. Test-retest reliability was assessed using the intraclass correlation coefficient (ICC). RESULTS: The ICC in the affected and unaffected sides was 0.713 and 0.74, respectively. Analysis of variance revealed significant deficits in ankle proprioception in subacute stroke survivors vs. healthy controls (F = 2.719, p = 0.045). However, there were no significant differences in proprioception acuity scores between the affected and unaffected sides in patients after stroke (F = 1.14, p = 0.331). CONCLUSIONS: Stroke survivors had bilateral deficits in ankle proprioceptive acuity during active movements compared with age-matched healthy controls, underscoring the need to evaluate these deficits on both sides of the body and develop effective sensorimotor rehabilitation methods for this patient population. The AMEDA can reliably determine bilateral ankle proprioceptive acuity in stroke survivors

    Two novel variations in LRP2 cause Donnai-Barrow syndrome in a Chinese family with severe early-onset high myopia

    Get PDF
    Donnai-Barrow syndrome (DBS) is a rare autosomal recessive disorder caused by mutation in the low density lipoprotein receptor-related protein 2 gene (LRP2). Defects in this protein may lead to clinical multiple organ malformations by affecting the development of organs such as the nervous system, eyes, ears, and kidneys. Although some variations on LRP2 have been found to be associated with DBS, early diagnosis and prevention of patients with atypical DBS remains a challenge for many physicians because of their clinical heterogeneity. The objective of this study is to explore the association between the clinical presentation and the genotype of a DBS patient who was initially diagnosed with early-onset high myopia (eoHM) from a healthy Chinese family. To this end, we tested the patient of this family via whole exome sequencing and further verified the results among other family members by Sanger sequencing. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. Genetic assessment revealed that two novel variations in LRP2, a de novo missense variation (c.9032G>A; p.Arg3011Lys) and a novel splicing variation (c.2909-2A>T) inherited from the father, were both carried by the proband in this family, and they are strongly associated with the typical clinical features of DBS patients. Therefore, in this paper we are the first to report two novel compound heterozygous variations in LPR2 causing DBS. Our study extends the genotypic spectrums for LPR2-DBS and better assists physicians in predicting, diagnosing, and conducting gene therapy for DBS

    Costa: Adaptive indexing for terms in a large-scale distributed system

    No full text
    To support keyword search in a large corpus has become a great challenge to database research, since existing storage management and indexing techniques should be adapted to fit the requirements of managing non-structured text data

    GChord: indexing for multi-attribute query in P2P system with low maintenance cost

    No full text
    Abstract. To provide complex query processing in peer-to-peer systems has attracted much attention in both academic and industrial community. We present GChord, a scalable technique for evaluating queries with multi-attributes. Both exact match and range queries can be handled by GChord. It has advantages over existing methods in that each tuple only needs to be indexed once, while the query efficiency is guaranteed. Thus, index maintenance cost and search efficiency are balanced. Additional optimization techniques further improves the performance of GChord. Extensive experiments are conducted to validate the efficiency of the proposed method.

    Study of Active Learning-Based Trademark Number Recognition Method

    No full text

    De novo variation in EP300 gene cause Rubinstein-Taybi syndrome 2 in a Chinese family with severe early-onset high myopia

    No full text
    Abstract Background Rubinstein-Taybi syndrome (RSTS) is characterized by distinctive facial features, broad and often angulated thumbs and halluces, short stature, and moderate-to-severe intellectual disability, classified into two types RSTS1 (CREBBP-RSTS) and RSTS2 (EP300-RSTS). More often, the clinical features are inconclusive and the diagnosis of RSTS is established in a proband with identification of a heterozygous pathogenic variant in CREBBP or EP300 to confirm the diagnosis. Methods In this study, to describe an association between the clinical phenotype and the genotype of a RSTS2 patient who was initially diagnosed with severe early-onset high myopia (eoHM) from a healthy Chinese family, we tested the proband of this family by whole exome sequencing (WES) and further verified among other family members by Sanger sequencing. Real-time quantitative PCR was used to detect differences in the relative mRNA expression of candidate genes available in the proband and family members. Comprehensive ophthalmic tests as well as other systemic examinations were also performed on participants with various genotypes. Results Whole-exome sequencing revealed that the proband carried the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene, which was not carried by the normal parents and young sister as verified by Sanger sequencing, indicating that the variant was de novo. Real-time quantitative PCR showed that the mRNA expression of EP300 gene was lower in the proband than in other normal family members, indicating that such a variant caused an effect on gene function at the mRNA expression level. The variant was classified as pathogenic as assessed by the interpretation principles of HGMD sequence variants and ACMG guidelines. According to ACMG guidelines, the heterozygous frameshift deletion variant c.3714_3715del (p.Leu1239Glyfs*3) in the EP300 gene was more likely the pathogenic variant of this family with RSTS2. Conclusions Therefore, in this paper, we first report de novo heterozygous variation in EP300 causing eoHM-RSTS. Our study extends the genotypic spectrums for EP300-RSTS and better assists physicians in predicting, diagnosis, genetic counseling, eugenics guidance and gene therapy for EP300-RSTS

    Novel mutations of the X-linked genes associated with early-onset high myopia in five Chinese families

    No full text
    Abstract Purpose To report novel pathogenic variants of X-linked genes in five Chinese families with early-onset high myopia (eoHM) by using whole-exome sequencing and analyzing the phenotypic features. Methods 5 probands with X-linked recessive related eoHM were collected in Ningxia Eye Hospital from January 2021 to June 2022. The probands and their family members received comprehensive ophthalmic examinations,and DNA was abstracted from patients and family members. Whole-exome sequencing was performed on probands to screen the causative variants, and all suspected pathogenic variants were determined by Sanger sequencing and co-segregation analysis was performed on available family members. The pathogenicity of novel variants was predicted using silico analysis and evaluated according to ACMG guidelines. RT-qPCR was used to detect differences in the relative mRNAs expression of candidate gene in mRNAs available with the proband and family members in the pedigree 2. The relationship between genetic variants and clinical features was analyzed. Results All probands were male, and all pedigrees conformed to an X-linked recessive inheritance pattern. They were diagnosed with high myopia at their first visits between 4 and 7 years old. Spherical equivalent ranged between − 6.00D and − 11.00D.The five novel hemizygous variants were found in the probands, containing frameshift deletion variant c.797_801del (p.Val266Alafs*75) of OPN1LW gene in the pedigree 1, nonsense variant c.513G > A (p.Trp171Ter)of RP2 gene in the pedigree 2, missense variant c.98G > T (p.Cys33Phe) of GPR143 gene in the pedigree 3, frameshift deletion variant c.1876_1877del (p.Met626Valfs*22) of FRMD7 gene in the pedigree 4 and inframe deletion variant c.670_ 675del (p.Glu192_ Glu193del) of HMGB3 gene in the pedigree 5. All variants were classified as pathogenic or likely pathogenic by the interpretation principles of HGMD sequence variants and ACMG guidelines. In family 2, RT-qPCR showed that the mRNA expression of RP2 gene was lower in the proband than in other normal family members, indicating that such variant caused an effect on gene function at the mRNA expression level. Further clinical examination showed that pedigrees 1, 2, 3, and 4 were diagnosed as X-linked recessive hereditary eye disease with early-onset high myopia, including quiescent cone dysfunction, retinitis pigmentosa, ocular albinism, and idiopathic congenital nystagmus respectively. The pedigree 5 had eoHM in the right eye and ptosis in both eyes. Conclusion In this paper,we are the first to report five novel hemizygous variants in OPN1LW, RP2, GPR143, FRMD7, HMGB3 genes are associated with eoHM. Our study extends the genotypic spectrums for eoHM and better assists ophthalmologists in assessing, diagnosing, and conducting genetic screening for eoHM
    corecore