21 research outputs found

    Differential Role of Human Choline Kinase α and β Enzymes in Lipid Metabolism: Implications in Cancer Onset and Treatment

    Get PDF
    11 pages, 6 figures, 1 table.Background The Kennedy pathway generates phosphocoline and phosphoethanolamine through its two branches. Choline Kinase (ChoK) is the first enzyme of the Kennedy branch of synthesis of 1phosphocholine, the major component of the plasma membrane. ChoK family of proteins is composed by ChoKα and ChoKβ isoforms, the first one with two different variants of splicing. Recently ChoKα has been implicated in the carcinogenic process, since it is over-expressed in a variety of human cancers. However, no evidence for a role of ChoKβ in carcinogenesis has been reported. Methodology/Principal Findings Here we compare the in vitro and in vivo properties of ChoKα1 and ChoKβ in lipid metabolism, and their potential role in carcinogenesis. Both ChoKα1 and ChoKβ showed choline and ethanolamine kinase activities when assayed in cell extracts, though with different affinity for their substrates. However, they behave differentially when overexpressed in whole cells. Whereas ChoKβ display an ethanolamine kinase role, ChoKα1 present a dual choline/ethanolamine kinase role, suggesting the involvement of each ChoK isoform in distinct biochemical pathways under in vivo conditions. In addition, while overexpression of ChoKα1 is oncogenic when overexpressed in HEK293T or MDCK cells, ChoKβ overexpression is not sufficient to induce in vitro cell transformation nor in vivo tumor growth. Furthermore, a significant upregulation of ChoKα1 mRNA levels in a panel of breast and lung cancer cell lines was found, but no changes in ChoKβ mRNA levels were observed. Finally, MN58b, a previously described potent inhibitor of ChoK with in vivo antitumoral activity, shows more than 20-fold higher efficiency towards ChoKα1 than ChoKβ. Conclusion/Significance This study represents the first evidence of the distinct metabolic role of ChoKα and ChoKβ isoforms, suggesting different physiological roles and implications in human carcinogenesis. These findings constitute a step forward in the design of an antitumoral strategy based on ChoK inhibition.This work has been supported by grants to JCL from Comunidad de Madrid (GR-SAL-0821-2004), Ministerio de Ciencia e Innovación (SAF2008-03750, RD06/0020/0016), Fundación Mutua Madrileña, and by a grant to ARM from Fundación Mutua Madrileña.Peer reviewe

    Molecular and functional properties of P2X receptors—recent progress and persisting challenges

    Full text link

    Anastomosis group and pathogenicity of isolates of Rhizoctonia solani from potato crops in South Australia

    No full text
    Isolates of Rhizoctonia collected from the stems, roots, tuber sclerotia and soil of potato crops in Virginia and Lenswood, South Australia, were identified to anastomosis groups (AG). Of the 301 multinucleate isolates of Rhizoctonia solani tested, 90% were AG-3, 7% were AG-4 and 2% were AG-5; 12 isolates were binucleate Rhizoctonia spp. This is the first report of isolates of AG-4 and AG-5 causing disease in potato crops in South Australia. All AG-3, AG-4 and AG-5 isolates tested caused rhizoctonia disease symptoms on the potato cultivar Coliban in pathogenicity trials conducted under glasshotise conditions. Both AG-3 and AG-5 isolates caused black scurf and stem cankers, although symptoms of black scurf were less severe with AG-5. AG-4 isolates produced the most severe stem and stolon cankers of all isolates tested. The pathogenicity of tuber-borne inoculum was confirmed by growing plants from sclerotia-infested tubers. AG-8 isolates from diseased barley and wheat produced severe root cankers and caused loss of feeder roots on inoculated potato plants. Results suggest that rhizoctonia disease in potato fields in South Australia is caused by a combination of different anastomosis groups and this has important implications for crop rotations.G. R. Balali, S. M. Neate, E. S. Scott, D. L. Whisson, T. J. Wick
    corecore