22 research outputs found

    GENDER DIFFERENCES IN TIBIAL ACCELERATION IN PRE-SEASON YOUTH SOCCER PLAYERS

    Get PDF
    In soccer, the players need to be able to change direction quickly, meaning the players need the ability to rapidly accelerate and decelerate. Females at a young age have a higher risk of sustaining injuries that can be caused by rapidly accelerating compared to males. The purpose was to investigate the gender differences in acceleration in youth soccer players. 30 youth soccer players engaged in the following drills: a jog, the M drill, 5-10-5 drill, and a single leg triple jump. This data was collected using inertial measurement units. The peak accelerations in the M drill on the left side was the only statistically significant drill (p=0.006, females: 590.9 ± 275.9 m/s2, males: 882.1 ± 263.4 m/s2). There is support to add load management strategies to current training programs and that individualized programs may be the most effective

    Effects of Gait Speed of Femoroacetabular Joint Forces

    Get PDF
    Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculo skeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care

    The Effects of Repetitive Drop Jumps on Impact Phase Joint Kinematics and Kinetics

    Get PDF
    The purpose of the study was to investigate the effects of fatigue on lower extremity joint kinematics, and kinetics during repetitive drop jumps. Twelve recreationally active males (n = 6) and females (n = 6) (nine used for analysis) performed repetitive drop jumps until they could no longer reach 80% of their initial drop jump height. Kinematic and kinetic variables were assessed during the impact phase (100 ms) of all jumps. Fatigued landings were performed with increased knee extension, and ankle plantar flexion at initial contact, as well as increased ankle range of motion during the impact phase. Fatigue also resulted in increased peak ankle power absorption and increased energy absorption at the ankle. This was accompanied by an approximately equal reduction in energy absorption at the knee. While the knee extensors were the muscle group primarily responsible for absorbing the impact, individuals compensated for increased knee extension when fatigued by an increased use of the ankle plantar flexors to help absorb the forces during impact. Thus, as fatigue set in and individuals landed with more extended lower extremities, they adopted a landing strategy that shifted a greater burden to the ankle for absorbing the kinetic energy of the impact

    Weight-Bearing Dorsiflexion Range of Motion and Landing Biomechanics in Individuals With Chronic Ankle Instablity

    Get PDF
    Context: People with chronic ankle instability (CAI) exhibit less weight-bearing dorsiflexion range of motion (ROM) and less knee flexion during landing than people with stable ankles. Examining the relationship between dorsiflexion ROM and landing biomechanics may identify a modifiable factor associated with altered kinematics and kinetics during landing tasks. Objective: To examine the relationship between weight-bearing dorsiflexion ROM and single-legged landing biomechanics in persons with CAI. Design: Cross-sectional study. Setting: Laboratory. Patients or Other Participants: Fifteen physically active persons with CAI (5 men, 10 women; age = 21.9 ± 2.1 years, height = 168.7 ± 9.0 cm, mass = 69.4 ± 13.3 kg) participated. Intervention(s): Participants performed dorsiflexion ROM and single-legged landings from a 40-cm height. Sagittal-plane kinematics of the lower extremity and ground reaction forces (GRFs) were captured during landing. Main Outcome Measure(s): Static dorsiflexion was measured using the weight-bearing–lunge test. Kinematics of the ankle, knee, and hip were observed at initial contact, maximum angle, and sagittal displacement. Sagittal displacements of the ankle, knee, and hip were summed to examine overall sagittal displacement. Kinetic variables were maximum posterior and vertical GRFs normalized to body weight. We used Pearson product moment correlations to evaluate the relationships between dorsiflexion ROM and landing biomechanics. Correlations (r) were interpreted as weak (0.00–0.40), moderate (0.41–0.69), or strong (0.70–1.00). The coefficient of determination (r2) was used to determine the amount of explained variance among variables. Results: Static dorsiflexion ROM was moderately correlated with maximum dorsiflexion (r = 0.49, r2 = 0.24), ankle displacement (r = 0.47, r2 = 0.22), and total displacement (r = 0.67, r2 = 0.45) during landing. Dorsiflexion ROM measured statically and during landing demonstrated moderate to strong correlations with maximum knee (r = 0.69–0.74, r2 = 0.47–0.55) and hip (r = 0.50–0.64, r2 = 0.25–0.40) flexion, hip (r = 0.53–0.55, r2 = 0.28–0.30) and knee (r = 0.53–0.70, r2 = 0.28–0.49) displacement, and vertical GRF (−0.47– −0.50, r2 = 0.22–0.25). Conclusions: Dorsiflexion ROM was moderately to strongly related to sagittal-plane kinematics and maximum vertical GRF during single-legged landing in persons with CAI. Persons with less dorsiflexion ROM demonstrated a more erect landing posture and greater GRF

    Task but not arm restriction influences lower extremity joint mechanics during bilateral landings

    No full text
    Box and jump landing tasks are commonly used to study lower extremity injury mechanisms, such as anterior cruciate ligament (ACL) injuries. Arm restriction during these tasks is typically determined via researcher preference. Therefore, the purpose of this study was to compare three-dimensional lower extremity kinematics and kinetics during bilateral box and jump landings, and to determine the effects of arm restriction. Twenty-eight participants (14 males, 14 females) completed three bilateral landings tasks: box landings with arms unrestricted (BLA), box landings with arms restricted against the trunk (BLNA) and jump landings (JL). Right leg joint kinematics and kinetics were collected and compared between landing tasks. No statistically significant differences were found between BLA and BLNA, therefore arm restriction did not appear to influence lower extremity variables during bilateral box landings. However, specific injury-related variables, such as peak knee adduction moment differed between box and jump landings (BLNA: 0.31 ± 0.3 Nm/(kg·m)); JL: 0.45 ± 0.3 Nm/(kg·m); p = 0.020). Our results suggest that based on study purpose, careful consideration is needed when determining what bilateral landing task to choose during data collection

    Influence of ground reaction force perturbations on anterior cruciate ligament loading during sidestep cutting

    No full text
    <p>Anterior cruciate ligament (ACL) injury risk is likely increased under unexpected loading conditions. Such situations may arise from mid-air contact with another athlete, or misjudgments in landing height, stride length or surface compliance resulting in an unbalanced landing and unexpected changes in the ground reaction forces (GRFs). The purpose this study was to identify how GRF perturbations influence ACL loading during sidestep cutting. Muscle-actuated simulations of sidestep cutting were generated and analyzed for 20 subjects. Perturbations of 20, 40 and 60% of the nominal value were applied to the posterior, vertical, and medial GRF. Open-loop, forward dynamics simulations were run with no feedback or correction mechanism which allowed deviations from the experimentally measured kinematics as a result of the GRF perturbations. Posterior and vertical GRF perturbations significantly increased ACL loading, although the change was more pronounced with posterior perturbations. These changes were primarily due to the sagittal plane component of ACL loading regardless of perturbation direction. Peak ACL loading occurred almost immediately after initial ground contact, and was thus predicated on initial joint configuration. The results of this study give merit to including knee flexion angle at initial ground contact in the evolving neuromuscular training modalities aimed at preventing non-contact ACL injury.</p

    Effects of Gait Speed of Femoroacetabular Joint Forces

    No full text
    Alterations in hip joint loading have been associated with diseases such as arthritis and osteoporosis. Understanding the relationship between gait speed and hip joint loading in healthy hips may illuminate changes in gait mechanics as walking speed deviates from preferred. The purpose of this study was to quantify hip joint loading during the gait cycle and identify differences with varying speed using musculoskeletal modeling. Ten, healthy, physically active individuals performed walking trials at their preferred speed, 10% faster, and 10% slower. Kinematic, kinetic, and electromyographic data were collected and used to estimate hip joint force via a musculoskeletal model. Vertical ground reaction forces, hip joint force planar components, and the resultant hip joint force were compared between speeds. There were significant increases in vertical ground reaction forces and hip joint forces as walking speed increased. Furthermore, the musculoskeletal modeling approach employed yielded hip joint forces that were comparable to previous simulation studies and in vivo measurements and was able to detect changes in hip loading due to small deviations in gait speed. Applying this approach to pathological and aging populations could identify specific areas within the gait cycle where force discrepancies may occur which could help focus management of care

    Lower extremity muscle contributions to ACL loading during a stop-jump task

    No full text
    Landing is considered a high-risk movement, especially landings from a stop-jump task, as they are often associated with lower extremity injuries, such as anterior cruciate ligament injuries (ACL). Females demonstrate lower extremity landing mechanics that often place them at a larger risk of injury compared to their male counterparts. While efforts have been made to understand lower extremity mechanics during stop-jump landings, little is known regarding the musculature function during these tasks and how they may influence ACL loading. Understanding lower extremity muscle contributions to ACL loading (FACL) may give insight to improving injury prevention protocols. Ten healthy, recreationally active females completed five trials of an unanticipated stop-jump task. Right leg kinematics, kinetics, and electromyography data were collected with three-dimensional motion capture, force plates, and electromyography sensors, respectively. Modified musculoskeletal models were scaled based on participant-specific anthropometrics, and muscle forces were obtained using static optimization. An induced acceleration analysis combined with a previously established mathematical ACL loading model was used to calculate lower extremity muscle contribution to FACL. The vastus lateralis, vastus intermedius, vastus medials, biceps femoris long head, semimembranosus, and soleus were found to be the primary contributors to FACL, with the vastus lateralis being the largest contributor. These data suggest that muscles traditionally known as ACL unloaders may in certain conditions load the ACL. These results also suggest that future injury prevention protocols should target muscles specifically to mitigate the influence the vastus lateralis has on ACL loading
    corecore