83 research outputs found

    Nipah Virus Infects Specific Subsets of Porcine Peripheral Blood Mononuclear Cells

    Get PDF
    Nipah virus (NiV), a zoonotic paramyxovirus, is highly contagious in swine, and can cause fatal infections in humans following transmission from the swine host. The main viral targets in both species are the respiratory and central nervous systems, with viremia implicated as a mode of dissemination of NiV throughout the host. The presented work focused on the role of peripheral blood mononuclear cells (PBMC) in the viremic spread of the virus in the swine host. B lymphocytes, CD4−CD8−, as well as CD4+CD8− T lymphocytes were not permissive to NiV, and expansion of the CD4+CD8− cells early post infection was consistent with functional humoral response to NiV infection observed in swine. In contrast, significant drop in the CD4+CD8− T cell frequency was observed in piglets which succumbed to the experimental infection, supporting the hypothesis that antibody development is the critical component of the protective immune response. Productive viral replication was detected in monocytes, CD6+CD8+ T lymphocytes and NK cells by recovery of infectious virus in the cell supernatants. Virus replication was supported by detection of the structural N and the non-structural C proteins or by detection of genomic RNA increase in the infected cells. Infection of T cells carrying CD6 marker, a strong ligand for the activated leukocyte cell adhesion molecule ALCAM (CD166) highly expressed on the microvascular endothelial cell of the blood-air and the blood-brain barrier may explain NiV preferential tropism for small blood vessels of the lung and brain

    Innate Immune Response to Rift Valley Fever Virus in Goats

    Get PDF
    Rift Valley fever (RVF), a re-emerging mosquito-borne disease of ruminants and man, was endemic in Africa but spread to Saudi Arabia and Yemen, meaning it could spread even further. Little is known about innate and cell-mediated immunity to RVF virus (RVFV) in ruminants, which is knowledge required for adequate vaccine trials. We therefore studied these aspects in experimentally infected goats. We also compared RVFV grown in an insect cell-line and that grown in a mammalian cell-line for differences in the course of infection. Goats developed viremia one day post infection (DPI), which lasted three to four days and some goats had transient fever coinciding with peak viremia. Up to 4% of peripheral blood mononuclear cells (PBMCs) were positive for RVFV. Monocytes and dendritic cells in PBMCs declined possibly from being directly infected with virus as suggested by in vitro exposure. Infected goats produced serum IFN-γ, IL-12 and other proinflammatory cytokines but not IFN-α. Despite the lack of IFN-α, innate immunity via the IL-12 to IFN-γ circuit possibly contributed to early protection against RVFV since neutralising antibodies were detected after viremia had cleared. The course of infection with insect cell-derived RVFV (IN-RVFV) appeared to be different from mammalian cell-derived RVFV (MAM-RVFV), with the former attaining peak viremia faster, inducing fever and profoundly affecting specific immune cell subpopulations. This indicated possible differences in infections of ruminants acquired from mosquito bites relative to those due to contact with infectious material from other animals. These differences need to be considered when testing RVF vaccines in laboratory settings

    Molecular and Antigenic Characterization of Reassortant H3N2 Viruses from Turkeys with a Unique Constellation of Pandemic H1N1 Internal Genes

    Get PDF
    Triple reassortant (TR) H3N2 influenza viruses cause varying degrees of loss in egg production in breeder turkeys. In this study we characterized TR H3N2 viruses isolated from three breeder turkey farms diagnosed with a drop in egg production. The eight gene segments of the virus isolated from the first case submission (FAV-003) were all of TR H3N2 lineage. However, viruses from the two subsequent case submissions (FAV-009 and FAV-010) were unique reassortants with PB2, PA, nucleoprotein (NP) and matrix (M) gene segments from 2009 pandemic H1N1 and the remaining gene segments from TR H3N2. Phylogenetic analysis of the HA and NA genes placed the 3 virus isolates in 2 separate clades within cluster IV of TR H3N2 viruses. Birds from the latter two affected farms had been vaccinated with a H3N4 oil emulsion vaccine prior to the outbreak. The HAl subunit of the H3N4 vaccine strain had only a predicted amino acid identity of 79% with the isolate from FAV-003 and 80% for the isolates from FAV-009 and FAV-0010. By comparison, the predicted amino acid sequence identity between a prototype TR H3N2 cluster IV virus A/Sw/ON/33853/2005 and the three turkey isolates from this study was 95% while the identity between FAV-003 and FAV-009/10 isolates was 91%. When the previously identified antigenic sites A, B, C, D and E of HA1 were examined, isolates from FAV-003 and FAV-009/10 had a total of 19 and 16 amino acid substitutions respectively when compared with the H3N4 vaccine strain. These changes corresponded with the failure of the sera collected from turkeys that received this vaccine to neutralize any of the above three isolates in vitro

    The Rift Valley fever accessory proteins NSm and P78/NSm-GN are distinct determinants of virus propagation in vertebrate and invertebrate hosts.: Role of NSm-related proteins in RVFV infection

    Get PDF
    International audienceRift Valley fever virus (RVFV) is an enzootic virus circulating in Africa that is transmitted to its vertebrate host by a mosquito vector and causes severe clinical manifestations in humans and ruminants. RVFV has a tripartite genome of negative or ambisense polarity. The M segment contains five in-frame AUG codons that are alternatively used for the synthesis of two major structural glycoproteins, GN and GC, and at least two accessory proteins, NSm, a 14-kDa cytosolic protein, and P78/NSm-GN, a 78-kDa glycoprotein. To determine the relative contribution of P78 and NSm to RVFV infectivity, AUG codons were knocked out to generate mutant viruses expressing various sets of the M-encoded proteins. We found that, in the absence of the second AUG codon used to express NSm, a 13-kDa protein corresponding to an N-terminally truncated form of NSm, named NSm', was synthesized from AUG 3. None of the individual accessory proteins had any significant impact on RVFV virulence in mice. However, a mutant virus lacking both NSm and NSm' was strongly attenuated in mice and grew to reduced titers in murine macrophages, a major target cell type of RVFV. In contrast, P78 was not associated with reduced viral virulence in mice, yet it appeared as a major determinant of virus dissemination in mosquitoes. This study demonstrates how related accessory proteins differentially contribute to RVFV propagation in mammalian and arthropod hosts

    In Vitro Reassortment between Endemic H1N2 and 2009 H1N1 Pandemic Swine Influenza Viruses Generates Attenuated Viruses

    Get PDF
    The pandemic H1N1 (pH1N1) influenza virus was first reported in humans in the spring of 2009 and soon thereafter was identified in numerous species, including swine. Reassortant viruses, presumably arising from the co-infection of pH1N1 and endemic swine influenza virus (SIV), were subsequently identified from diagnostic samples collected from swine. In this study, co-infection of swine testicle (ST) cells with swine-derived endemic H1N2 (MN745) and pH1N1 (MN432) yielded two reassortant H1N2 viruses (R1 and R2), both possessing a matrix gene derived from pH1N1. In ST cells, the reassortant viruses had growth kinetics similar to the parental H1N2 virus and reached titers approximately 2 log10 TCID50/mL higher than the pH1N1 virus, while in A549 cells these viruses had similar growth kinetics. Intranasal challenge of pigs with H1N2, pH1N1, R1 or R2 found that all viruses were capable of infecting and transmitting between direct contact pigs as measured by real time reverse transcription PCR of nasal swabs. Lung samples were also PCR-positive for all challenge groups and influenza-associated microscopic lesions were detected by histology. Interestingly, infectious virus was detected in lung samples for pigs challenged with the parental H1N2 and pH1N1 at levels significantly higher than either reassortant virus despite similar levels of viral RNA. Results of our experiment suggested that the reassortant viruses generated through in vitro cell culture system were attenuated without gaining any selective growth advantage in pigs over the parental lineages. Thus, reassortant influenza viruses described in this study may provide a good system to study genetic basis of the attenuation and its mechanism

    Distinct Regulation of Host Responses by ERK and JNK MAP Kinases in Swine Macrophages Infected with Pandemic (H1N1) 2009 Influenza Virus

    Get PDF
    Swine influenza is an acute respiratory disease in pigs caused by swine influenza virus (SIV). Highly virulent SIV strains cause mortality of up to 10%. Importantly, pigs have long been considered “mixing vessels” that generate novel influenza viruses with pandemic potential, a constant threat to public health. Since its emergence in 2009 and subsequent pandemic spread, the pandemic (H1N1) 2009 (H1N1pdm) has been detected in pig farms, creating the risk of generating new reassortants and their possible infection of humans. Pathogenesis in SIV or H1N1pdm-infected pigs remains poorly characterized. Proinflammatory and antiviral cytokine responses are considered correlated with the intensity of clinical signs, and swine macrophages are found to be indispensible in effective clearance of SIV from pig lungs. In this study, we report a unique pattern of cytokine responses in swine macrophages infected with H1N1pdm. The roles of mitogen-activated protein (MAP) kinases in the regulation of the host responses were examined. We found that proinflammatory cytokines IL-6, IL-8, IL-10, and TNF-α were significantly induced and their induction was ERK1/2-dependent. IFN-β and IFN-inducible antiviral Mx and 2′5′-OAS were sharply induced, but the inductions were effectively abolished when ERK1/2 was inhibited. Induction of CCL5 (RANTES) was completely inhibited by inhibitors of ERK1/2 and JNK1/2, which appeared also to regulate FasL and TNF-α, critical for apoptosis in pig macrophages. We found that NFκB was activated in H1N1pdm-infected cells, but the activation was suppressed when ERK1/2 was inhibited, indicating there is cross-talk between MAP kinase and NFκB responses in pig macrophages. Our data suggest that MAP kinase may activate NFκB through the induction of RIG-1, which leads to the induction of IFN-β in swine macrophages. Understanding host responses and their underlying mechanisms may help identify venues for effective control of SIV and assist in prevention of future influenza pandemics

    Sensitivity and specificity of monoclonal and polyclonal immunohistochemical staining for West Nile virus in various organs from American crows (Corvus brachyrhynchos)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Based on results of earlier studies, brain, heart and kidney are most commonly used for West Nile virus (WNV) detection in avian species. Both monoclonal and polyclonal antibodies have been used for the immunohistochemical diagnosis of WNV in these species. Thus far, no studies have been performed to compare the sensitivity and specificity of monoclonal and polyclonal antibodies in detecting WNV in American crows (<it>Corvus brachyrhynchos</it>). Our objectives were to determine 1) the comparative sensitivities of monoclonal and polyclonal antibodies for immunohistochemical (IHC) diagnosis of WNV infection in free-ranging American crows, 2) which organ(s) is/are most suitable for IHC-based diagnosis of WNV, and 3) how real-time RT-PCR on RNA extracted from formalin-fixed paraffin-embedded tissues compared to IHC for the diagnosis of WNV infection.</p> <p>Methods</p> <p>Various combinations, depending on tissue availability, of sections of heart, kidney, brain, liver, lung, spleen, and small intestine from 85 free-ranging American crows were stained using a rabbit-polyclonal anti-WNV antibody as well as a monoclonal antibody directed against an epitope on Domain III of the E protein of WNV. The staining intensity and the extent of staining were determined for each organ using both antibodies. Real-time RT-PCR on formalin-fixed paraffin-embedded tissues from all 85 crows was performed.</p> <p>Results</p> <p>Forty-three crows were IHC-positive in at least one of the examined organs with the polyclonal antibody, and of these, only 31 were positive when IHC was performed with the monoclonal antibody. Real-time RT-PCR amplified WNV-specific sequences from tissue extracts of the same 43 crows that were IHC-positive using the polyclonal antibody. All other 42 crows tested negative for WNV with real-time PCR and IHC staining. Both antibodies had a test specificity of 100% when compared to PCR results. The test sensitivity of monoclonal antibody-based IHC staining was only 72%, compared to 100% when using the polyclonal antibody.</p> <p>Conclusion</p> <p>The most sensitive, readily identified, positively staining organs for IHC are the kidney, liver, lung, spleen, and small intestine. Real-time RT-PCR and IHC staining using a polyclonal antibody on sections of these tissues are highly sensitive diagnostic tests for the detection of WNV in formalin-fixed tissues of American crows.</p
    corecore