14 research outputs found

    Clinical evaluation of the QuickVet®/RapidVet® canine dog erythrocyte antigen 1.1 blood-typing test

    Get PDF
    In transfusion medicine, blood typing is an integral part of pretransfusion testing. The objective of the current study was the clinical evaluation of an automated canine cartridge dog erythrocyte antigen (DEA) 1.1 blood-typing method (QuickVet/RapidVet) and comparison of the results with a gel column- based method (ID-Gel Test Canine DEA 1.1). Ethylenediamine tetra-acetic acid- anticoagulated blood samples from 11 healthy and 85 sick dogs were available for typing. Before blood typing, all samples were tested for agglutination and hemolysis. All samples were tested once or multiple times with both methods according to the manufacturer's guidelines. With the gel method, 53 dogs tested DEA 1.1 positive and 42 dogs DEA 1.1 negative; blood typing was not possible due to erythrocyte autoagglutination in 1 dog. With the cartridge test, 53 samples tested DEA 1.1 positive, 34 samples tested DEA 1.1 negative, and 6 results were inconclusive (3 samples were not included due to autoagglutination or severe hemolysis). Without taking the inconclusive samples into account, the agreement between both methods was 96.5%. The sensitivity and specificity for samples that were definitively typed by both methods were 100% and 91.9%, respectively. The cartridge test was suitable for in-clinic canine DEA 1.1 blood typing, although some discrepancies compared to the gel method existed. The cartridge test is software-directed, is easy to use, and does not require user interpretation, but preanalytical guidelines (sample evaluation for agglutination and hemolysis) have to be followed. For inconclusive results, an alternate blood-typing method should be performed

    Alloimmunization in dogs after transfusion: A serial cross-match study

    Get PDF
    Background Cross-matching is performed to determine the serological compatibility of donor and recipient blood. Current guidelines recommend that cross-matching should be performed in dogs when an initial transfusion was performed more than 4 days ago or when the transfusion history is unknown. Hypothesis Determination at what time point alloantibodies are detected in dogs after transfusion. The hypothesis was that dogs would form alloantibodies within 4 days after a transfusion. Animals Twenty-one anemic dogs were transfused and monitored for at least 4 subsequent days. Exclusion criteria were persistent red blood cell (RBC) agglutination and a previous transfusion. Methods Prospective observational study. Cross-matching was performed before the initial DEA 1-compatible transfusion and on days 1, 2, 3, and 4 and if possible, between day 5 and 28, using the tube method without enhancement (major cross-match, recipient controls); recipients were monitored for transfusion reactions. Results In 12/21 dogs a positive cross-match (microscopic degree of agglutination [AD] 1+ to 2+) was observed within 4 days after the transfusion. In a nonlinear regression model, no significant association was detected between type of anemia (P = .41), RBC storage time (P = .44), immunosuppressive treatment (P = .75) nor transfusion volume (P = .70) and the occurrence of positive cross-matches within 4 days after transfusion. Another 4 dogs developed a positive cross-match (microscopic AD 1+ to 2+) after 6 to 13 days. Conclusions and Clinical Importance Because production of alloantibodies was detected as early as 1 day after transfusion, cross-matching should be performed before every subsequent transfusion

    High genetic diversity of Babesia canis (Piana & Galli-Valerio, 1895) in a recent local outbreak in Berlin/ Brandenburg, Germany

    Get PDF
    Canine babesiosis caused by Babesia canis (Piana & Galli-Valerio, 1895) is emerging in new regions in Europe since its vector Dermacentor reticulatus (Fabricius, 1794) is expanding its geographic range. In the Berlin/Brandenburg area in northeast Germany, D. reticulatus is highly abundant but in the past only one autochthonous B. canis infection was reported. Since 2015, autochthonous cases were occasionally diagnosed but numbers increased since autumn 2019. The aim of the study was to genotype autochthonous canine Babesia spp. infections from Berlin/Brandenburg. Between 04/2015 and 01/2022, 46 dogs with acute babesiosis were presented to the small animal clinic (one dog was infected twice resulting in 47 samples). There were 32 dogs that had never left Berlin/Brandenburg and 14 others that had not left the region in the 6 weeks prior to disease onset. PCRs targeting the 18S rRNA and the Bc28.1 merozoite surface antigen were positive in 47 and 42 samples, respectively. Sequencing of cloned PCR products identified all samples as B. canis with 17 18S rRNA and 12 Bc28.1 haplotypes. Based on network analysis for 18S rRNA sequences and a previously described polymorphic dinucleotide, samples were assigned to two distinct clusters. One contained 31 and the other 16 samples. Using network analysis, the Bc28.1 haplotypes could also be separated into two clusters differing by at least five polymorphisms. Analyses of sequences from multiple clones indicated the presence of up to five 18S rRNA and eight Bc28.1 haplotypes and thus high parasite variability in an individual host. The genetic diversity could suggest that the parasites in the region have multiple origins, but diversity in individual dogs and dog populations from endemic regions is unknown. The suitability of both markers for genotyping is questionable due to potential intragenomic diversity for the rRNA and high intergenomic variability for the Bc28.1 marker

    Limiting Factors in Treatment Success of Biofilm-Forming Streptococci in the Case of Canine Infective Endocarditis Caused by Streptococcus canis

    Get PDF
    An 8-year-old male Rhodesian Ridgeback was presented with fever and severe thrombocytopenia. Clinical and laboratory examination, echocardiography, blood culture, and pathohistology revealed evidence of infective endocarditis, ischemic renal infarcts, and septic encephalitis. Treatment was started immediately but the dog’s condition worsened, and the dog had to be euthanized. The causative Streptococcus canis strain was detected by blood culture and MALDI-TOF MS and analyzed using whole-genome sequencing and multilocus sequence typing. Antibiotic susceptibility testing did not detect any resistance. The affected heart valve was analyzed using FISH imaging, which showed a streptococcal biofilm on the heart valve. Bacteria in biofilms are recalcitrant to antibiotic treatment. Early diagnosis could be beneficial to treatment outcome. Treatment of endocarditis could be improved by researching the optimal dosage of antibiotics in conjunction with the use of biofilm-active drugs

    Antimicrobial and Biocide Resistance among Feline and Canine Staphylococcus aureus and Staphylococcus pseudintermedius Isolates from Diagnostic Submissions

    Get PDF
    A total of 114 Staphylococcus isolates from various infections of companion animals, including 43 feline Staphylococcus aureus, 19 canine S. aureus, 11 feline Staphylococcus pseudintermedius and 41 canine S. pseudintermedius were investigated for (i) their susceptibility to 24 antimicrobial agents and three combinations of antimicrobial agents by broth microdilution following CLSI recommendations and (ii) the corresponding resistance genes. In addition, the isolates were tested for their susceptibility to the four biocides benzalkonium chloride, chlorhexidine, polyhexanide and octenidine by a recently developed biocide susceptibility testing protocol. Penicillin resistance via blaZ was the dominant resistance property in all four groups of isolates ranging between 76.7 and 90.9%. About one quarter of the isolates (25.4%) proved to be methicillin-resistant and carried the genes mecA or mecC. Macrolide resistance was the second most prevalent resistance property (27.2%) and all isolates harbored the resistance genes erm(A), erm(B), erm(C), erm(T) or msr(A), alone or in combinations. Fluoroquinolone resistance was detected in 21.1% of all isolates tested, whereas tetracycline resistance via tet(K) and/or tet(M) occurred in 19.3% of the isolates. Resistance to last resort antimicrobial agents in human medicine was seen only in single isolates, if at all. The minimal inhibitory concentrations (MICs) of the four biocides showed unimodal distributions and were very similar for the four groups of staphylococci. Because of the large number of (multi)resistant isolates, antimicrobial susceptibility testing of feline and canine S. aureus and S. pseudintermedius isolates is highly recommended before the start of an antimicrobial chemotherapy. Moreover, no hints towards the development of biocide resistance were detected

    Antimicrobial and Biocide Resistance among Canine and Feline Enterococcus faecalis, Enterococcus faecium, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter baumannii Isolates from Diagnostic Submissions

    Get PDF
    A total of 215 isolates from infections of dogs and cats, including 49 Enterococcus faecalis, 37 Enterococcus faecium, 59 Escherichia coli, 56 Pseudomonas aeruginosa, and 14 Acinetobacter baumannii, were investigated for their susceptibility to 27 (Gram-positive bacteria) or 20 (Gram-negative bacteria) antimicrobial agents/combinations of antimicrobial agents by broth microdilution according to the recommendations of the Clinical and Laboratory Standards Institute. Moreover, all isolates were analysed for their susceptibility to the biocides benzalkonium chloride, chlorhexidine, polyhexanide, and octenidine by a recently published broth microdilution biocide susceptibility testing method. While the E. faecalis isolates did not show expanded resistances, considerable numbers of the E. faecium isolates were resistant to penicillins, macrolides, tetracyclines, and fluoroquinolones. Even a single vancomycin-resistant isolate that carried the vanA gene cluster was detected. Expanded multiresistance phenotypes were also detected among the E. coli isolates, including a single carbapenem-resistant, blaOXA-48-positive isolate. In addition, multiresistant A. baumannii isolates were detected. The minimal inhibitory concentrations of the biocides showed unimodal distributions but differed with respect to the biocide and the bacterial species investigated. Although there were no indications of a development of biocide resistance, some P. aeruginosa isolates exhibited benzalkonium MICs higher than the highest test concentration

    Feline blood transfusion: indications, transfusion reactions and results (1998-2001)

    No full text
    Titelblatt, Inhaltsverzeichnis, Lebenslauf 1\. Einleitung 2\. Literaturubersicht 3\. Material und Methoden 4\. Ergebnisse 5\. Diskussion 6\. Zusammenfassung 7\. Summary 8\. Literatur 9\. AnhangBluttransfusionen haben auch bei der Katze als intensivmedizinische Therapiemassnahme in den letzten Jahren an Bedeutung gewonnen, jedoch liegen nur wenige klinische Daten zu Indikationen und Effizienz vor. Das Ziel dieser Untersuchungen war daher, die an der Klinik fur kleine Haustiere, FU Berlin innerhalb von 3 Jahren (15 Monate retrospektiv/21 Monate prospektiv) durchgefuhrten Bluttransfusionen bei der Katze in Hinblick auf folgende Parameter auszuwerten: Auswahl und Nebenwirkungen bei Spenderkatzen, Blutgruppenverteilung bei Spendern und Patienten, Transfusionsindikationen und -haufigkeit, Transfusionsvolumen, Hamatokritanderung nach der Transfusion, Ergebnisse der Kreuzproben vor und nach der Transfusion, Auftreten von Transfusionsreaktionen und dem Transfusionserfolg bzw. der Überlebensrate. Zusatzlich wurden in einem Teil der Falle ein Coombs-Test vor und nach der Transfusion durchgefuhrt. Als Blutspender dienten klinikeigene Spenderkatzen sowie Katzen von Klinikangehorigen und im Privatbesitz, die gesund, moglichst gross, geimpft, FeLV- und FIV- negativ und nur in der Wohnung gehalten sein sollten. Nach einer Allgemein- und Blutuntersuchung wurden die Spender sediert und das Blut aus der V. jugularis externa mit Hilfe eines Butterfly-Katheters in natriumzitrathaltige Spritzen (1ml 3,13% Na-Zitrat auf 9 ml Blut) aspiriert. Das entnommene Blut wurde in einen Transferbeutel uberfuhrt und sofort transfundiert. Im prospektiven Teil der Studie wurden zum Teil durch Zusatz von CPDA-1 (1,2 ml CPDA-1 auf 8,8 ml Blut) Blutkonserven hergestellt. Bei Spender und Empfanger wurde eine Blutgruppenbestimmung durchgefuhrt. Sowohl vor als auch 16-24 Stunden nach der Transfusion wurde der Hamatokrit des Patienten bestimmt, wahrend und nach der Transfusion wurde auf Transfusionsreaktionen geachtet. Über einen Zeitraum von 3 Jahren erhielten 91 Katzen 163 Bluttransfusionen. Insgesamt spendeten 134 Katzen Blut, dabei handelte es sich bei 127 Katzen um Tiere von Klinikangehorigen und aus Privatbesitz, die in der Regel nur ein Mal spendeten. Sieben klinikeigene Blutspendekatzen spendeten fur insgesamt 45 Bluttransfusionen (28% der Bluttransfusionen). Das Alter aller Spenderkatzen reichte von 0,5-15 Jahre (Median (M) 4 Jahre), sie wogen zwischen 2,7-9 kg (M 5 kg). Pro Blutspende wurden 1,8-9,5 ml Blut/kg Korpergewicht (M 5,9 ml/kg, 10-50 ml pro Spende) abgenommen. Eine klinisch unauffallige Spenderkatze verstarb 2 Tage nach der Blutspende infolge einer klinisch unauffalligen dilatativen Kardiomyopathie. Ansonsten traten bei den Spenderkatzen keine Nebenwirkungen auf. 95,6 % der Blutspender und Empfanger hatten die Blutgruppe A, 4,0 % die Blutgruppe B und 0,4 % die Blutgruppe AB. Es wurden nur AB-kompatible Transfusionen durchgefuhrt, ausser bei einer Katze mit der Blutgruppe AB, die Blut von drei Katzen mit der Blutgruppe A erhielt. Bei 159 Bluttransfusionen war die Hauptindikation eine Anamie. Die ubrigen 4 Bluttransfusionen wurden wegen Hypoproteinamie (2) und Koagulopathie (2) verabreicht. 40 Katzen mit einer Blutungsanamie erhielten 62 Transfusionen (Median (M) 1 Bluttransfusion (BT) /Katze) und 1,7-16,3 ml Blut/kg (M 6 ml/kg) Korpergewicht. Der Hkt betrug vor der Transfusion im Mittel 14% und reichte von 8-20%. 16-24 Stunden nach der BT wiesen die Katzen einen Hkt von 18,5% (11-28%) auf, bei einer Hkt-Änderung von 4,7% (-5 bis 12%). 13 Katzen, die an einer hamolytischen Anamie litten, erhielten 21 BT (M 1 BT/Katze). Das Transfusionsvolumen reichte von 16-50 ml pro BT (3,5-12,5 ml/kg Korpergewicht, M 7 ml/kg). Vor der BT reichte der Hkt von 6-17% (M 13%). Nach der Transfusion wurde ein Hkt von 8-22% (M 16%) festgestellt. Die Hkt-Änderung betrug 1-9% (M 3%). 35 Katzen waren infolge einer ineffektiven Erythropoese anamisch. Sie erhielten insgesamt 76 BT (M 2 BT/Katze). Vor der Transfusion reichte der Hkt von 5-20% (Median 12%). Mit einem Transfusionsvolumen von 10-70 ml/BT (3,3-16 ml/kg Korpergewicht, M 6,7 ml/kg) wurde eine Hkt-Änderung von -4 bis 19% (M 4%) erreicht. Nach der BT reichte der Hkt von 9-27% (M 14%). Bei 2 von 163 Transfusionen (1,2%) trat eine Transfusionsreaktion mit Pyrexie, Tachypnoe und Bilirubinamie ein. In beiden Fallen lag eine Blutgruppen- und Kreuzprobenkompatibilitat vor. Wahrend der ersten 24 Stunden wurden 14 Katzen mit einer akuten Blutungsanamie (4), Hamolyse (3) und einer ineffektiven Erythropoese (7) euthanasiert bzw. verstarben. Wahrend der folgenden 9 Tage traten weitere 19 Todesfalle auf, davon litten 7 Katzen an einer Blutungsanamie und 12 an einer ineffektiven Erythropoese. Somit ergab sich bei den anamischen Katzen nach 24 Stunden eine Überlebensrate von 84,1% und nach den folgenden 9 Tagen von 63,7 %. Nur eine der vier Katzen, die aus einem anderen Grund als einer Anamie transfundiert wurden, uberlebte. Im prospektiven Teil der Studie wurden 117 Kreuzproben vor der Transfusion bei 60 Katzen durchgefuhrt. Es traten in jeweils 7 Major- und Minorproben eine Agglutinationsreaktion auf, wobei alle bis auf eine Katze bereits vorher transfundiert wurden. Eine zweite Kreuzprobe wurde 3-21 Tage nach 57 Transfusionen und eine dritte Kreuzprobe 20-71 Tage nach 4 Transfusionen durchgefuhrt. Zwei Major- und 4 Minorreaktionen traten bei einer Katze mit der Blutgruppe AB auf, die mit Typ A-Blut transfundiert wurde. 9 Majorproben der zweiten bzw. dritten Kreuzprobe waren moglicherweise infolge einer Sensibilisierung gegen die transfundierten Erythrozyten inkompatibel. Eine dieser Katzen mit positiver Kreuzprobe, die multipel transfundiert wurde, wies 21 Tage nach der ersten Transfusion einen positiven Coombs-Test auf, was eine Antikorperbildung gegen die transfundierten oder eigenen Erythrozyten vermuten liess. Durch eine sorgfaltige Spenderauswahl, Blutgruppenbestimmung und Kreuzprobe sowie einer fachgerechten Transfusionstechnik sind feline Bluttransfusionen sicher und effizient, fuhren aber nicht immer zu dem erwarteten Hamatokritanstieg. Der Einsatz von Fremdspendern an Stelle von klinikeigenen Spendern ist eine praktikable und sinnvolle allerdings arbeitsintensive Massnahme.Due to increased availability and improved transfusion skills, blood transfusions have become more important in the management of anemic and bleeding cats. Until now there have been only few studies concerning feline blood transfusion practice. The purpose of this study was to evaluate feline blood transfusions during a 3-year study period (15 months retro-/21 months prospectively) at the Small Animal Clinic, University of Berlin. The following parameters were evaluated: donor data, side effects of donation, distribution of blood groups in donors and patients, indications for transfusion, transfusion frequency and volume, hematocrit change after transfusion, cross match results prior and after transfusion, incidence of transfusion reactions and efficacy or survival rate, respectively. In some cases coombs tests were performed before and after transfusion. Besides clinic-owned cats, staff- or client owned cats were used as blood donors. Cats had to be healthy, large, vaccinated, screened for viral infections and kept indoors. After physical examination and obtaining a complete blood count and serum chemistry profile the donors were sedated and the blood was drawn into syringes containing sodium citrate (1 ml sodium citrate 3.13% per 9 ml blood) through a butterfly catheter placed in the jugular vein. The blood was transferred into transfer bags and transfused immediately. In some cases blood storage was performed collecting the blood with CPDA-1 (1.2 ml CPDA-1 per 8.8 ml blood). The blood type was determined in donors and recipients. Before and 16-24 hours after transfusion the hematocrit was measured. The patients were controlled during and after transfusion for the occurence of adverse reactions. Over a 3 year period 91 patients received 163 blood transfusions. 134 cats donated blood. 127 staff- or client owned cats donated usually only once. Seven clinic-owned cats served as donors for 45 blood transfusions (28% of all transfusions). The age of the donors ranged from 0.5-15 years (median 4), they weighed between 2.7-9 kg (median 5). Per donation 10-50 ml of blood was removed (1.8-9.5 ml/kg, median 5.9 ml/kg). One cat died two days after donation due to occult dilated cardiomyopathy. 95.6% of the donors and recipients were blood type A, 4.0% were blood type B and 0.4% had type AB. Only AB compatible transfusions were performed with the exception of an AB-cat which was transfused with type A blood of three different donors. In 159 of the 163 blood transfusions the major indication was anemia. The other 4 blood transfusions were given due to hypoproteinemia (2) and coagulopathy (2). Of the 91 anemic cats 40 suffered from blood loss anemia. The cats received 62 transfusions (median 1/cat) and 1.7-16.3 ml blood/kg body weight (median 6). Hematocrits prior to transfusion ranged from 8-20% (median 14) and after 16-24 hours from 11-28% (median 18.5) with a hematocrit change of ý5-12% (median 4.7). Thirteen cats with hemolytic anemia received 21 blood transfusions (median 1/cat). The transfusion volume ranged from 16-50 ml per blood transfusion (3.5-12.5 ml blood/kg (median 7) body weight). The hematocrit increased from 6-17% (median 13) to 8-22% (median 16). The hematocrit rise was 1-9% (median 3). 35 cats with ineffective erythropoiesis received 76 blood transfusions (median 2/cat). The cats´ hematocrits prior to transfusion were 5-20% (median 12). With a transfusion volume of 10-70 ml per blood transfusion (3.3-16 ml/kg body weight) the hematocrit change ranged from -4 to 19% (median 4). After transfusion the hematocrit ranged from 9-27 % (median 14). Transfusion reactions including pyrexia, tachypnea and hyperbilirubinemia were noted in only 2 of 163 blood transfusions (1.2%). In both cases crossmatch results and blood type were compatible. 14 cats with blood loss anemia (4), hemolysis (3) and ineffective erythropoiesis (7) died or were euthanized during the first 24 hours after transfusion. During the following 9 days 19 cats died due to blood loss anemia (7) and ineffective erythropoiesis (12). For the first 24 hours after transfusion the survival rate was 84.1% and for the following 9 days 63.7%. Only one of the cats which was not transfused because of anemia survived. In the prospective part of the study crossmatching preceded 117 of the transfusions in 60 cats. The major resp. minor reaction was positive in 7 cases each, all except for one had previously received blood. A second and third crossmatch was performed 3-21 days and 20-71 days after 57 and 4 transfusions, respectively. The crossmatch (2 major, 4 minor reactions) was positive in a type AB cat, which had been transfused with type A blood. The major reaction of the second or third crossmatch was incompatible in 9 cases suggesting sensitization against transfused erythrocytes. In one cat, which received multiple transfusions, the major reaction and the coombs test were positive suggesting antibody production against transfused or owned erythrocytes. With appropriate donor selection, initial blood typing and subsequent crossmatching as well as appropriate blood collection and administration techniques blood transfusions are safe and efficient, but do not always result in the expected rise in hematocrit

    Infection with haemoplasma species in 22 cats with anaemia

    No full text
    Objectives Information regarding the clinical course of natural infection with feline haemotropic mycoplasmas (haemoplasmas) is limited. The objective of the study was to describe the clinical findings and course of disease in naturally infected cats with haemoplasmosis and anaemia. Methods A retrospective analysis was performed on patient data from cats presenting with anaemia and haemoplasma infection regarding signalment, clinical signs, laboratory data and course of infection. The diagnosis was confirmed by conventional haemoplasma PCR analysis. Results Haemoplasma infection was found in 22 anaemic (haematocrit 5–25% [median 17%]; reference interval 30–44%) cats (‘ Candidatus Mycoplasma haemominutum’, n = 12; Mycoplasma haemofelis, n = 3; ‘ Candidatus Mycoplasma turicensis’, n = 2; species not determined, n = 4; coinfection with all three species, n = 1) between 2005 and 2014. Thirteen of the cats had concurrent diseases. All cats underwent antibiotic treatment; 15 cats received blood products. Six cats were euthanased within 11 weeks owing to concurrent disease, persistent severe anaemia or financial constraints. Ten cats underwent follow-up for a period of 14–199 weeks (median 26 weeks). Haemoplasma PCR was negative in 5/7 cases after 3–23 weeks. PCR remained positive in two cases after 18 and 199 weeks, respectively. Reactivation of the haemoplasma infection occurred in two cats, once and three times, respectively, up to 177 weeks after initial presentation. Reactivation was suspected in two further cases. Owing to concurrent disease, four of the 10 follow-up cats were euthanased 14–180 weeks after initial presentation. Conclusion and relevance Infection with haemoplasma species is often chronic, can reactivate months later and is rarely a reason for euthanasia. </jats:sec
    corecore