196 research outputs found

    Operational multipartite entanglement classes for symmetric photonic qubit states

    Full text link
    We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.Comment: 5 pages, 1 figur

    Photonic multipartite entanglement conversion using nonlocal operations

    Full text link
    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.Comment: 10 pages, 6 figures, correction of reference list, add Journal ref. and DO

    High-Fidelity Teleportation of Independent Qubits

    Get PDF
    Quantum teleportation is one of the essential primitives of quantum communication. We suggest that any quantum teleportation scheme can be characterized by its efficiency, i.e. how often it succeeds to teleport, its fidelity, i.e. how well the input state is reproduced at the output, and by its insensitivity to cross talk, i.e. how well it rejects an input state that is not intended to teleport. We discuss these criteria for the two teleportation experiments of independent qubits which have been performed thus far. In the first experiment (Nature {\bf 390},575 (1997)) where the qubit states were various different polarization states of photons, the fidelity of teleportation was as high as 0.80 ±\pm 0.05 thus clearly surpassing the limit of 2/3 which can, in principle, be obtained by a direct measurement on the qubit and classical communication. This high fidelity is confirmed in our second experiment (Phys. Rev. Lett. {\bf 80}, 3891 (1998)), demonstrating entanglement swapping, that is, realizing the teleportation of a qubit which itself is still entangled to another one. This experiment is the only one up to date that demonstrates the teleportation of a genuine unknown quantum state.Comment: 13 pages, Latex, 5 figures(eps), to appear in Journal of Modern Optic

    Experimental demonstration of four-party quantum secret sharing

    Get PDF
    Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement

    Universal measurement apparatus controlled by quantum software

    Full text link
    We propose a quantum device that can approximate any projective measurement on a qubit. The desired measurement basis is selected by the quantum state of a "program register". The device is optimized with respect to maximal average fidelity (assuming uniform distribution of measurement bases). An interesting result is that if one uses two qubits in the same state as a program the average fidelity is higher than if he/she takes the second program qubit in the orthogonal state (with respect to the first one). The average information obtainable by the proposed measurements is also calculated and it is shown that it can get different values even if the average fidelity stays constant. Possible experimental realization of the simplest proposed device is presented.Comment: 4 pages, 2 figures, reference adde

    Optical Bell-state analysis in the coincidence basis

    Full text link
    Many quantum information protocols require a Bell-state measurement of entangled systems. Most optical Bell-state measurements utilize two-photon interference at a beam splitter. By creating polarization-entangled photons with spontaneous parametric down-conversion using a first-order Hermite-Gaussian pump beam, we invert the usual interference behavior and perform an incomplete Bell-state measurement in the coincidence basis. We discuss the possibility of a complete Bell-state measurement in the coincidence basis using hyperentangled states [Phys. Rev. A, \textbf{58}, R2623 (1998)].Comment: 5 pages, 5 figure

    Quantum teleportation and entanglement swapping with linear optics logic gates

    Full text link
    We report on the usage of a linear optics phase gate for distinguishing all four Bell states simultaneously in a quantum teleportation and entanglement swapping protocol. This is demonstrated by full state tomography of the one and two qubit output states of the two protocols, yielding average state fidelities of about 0.83 and 0.77, respectively. In addition, the performance of the teleportation channel is characterised by quantum process tomography. The non classical properties of the entanglement swapping output states are further confirmed by the violation of a CHSH-type Bell inequality of 2.14 on average.Comment: 11 pages, 3 figure

    Classical and quantum communication without a shared reference frame

    Get PDF
    We show that communication without a shared reference frame is possible using entangled states. Both classical and quantum information can be communicated with perfect fidelity without a shared reference frame at a rate that asymptotically approaches one classical bit or one encoded qubit per transmitted qubit. We present an optical scheme to communicate classical bits without a shared reference frame using entangled photon pairs and linear optical Bell state measurements.Comment: 4 pages, published versio

    Experimental Realization of Teleporting an Unknown Pure Quantum State via Dual Classical and Einstein-Podolski-Rosen Channels

    Get PDF
    We report on a quantum optical experimental implementation of teleportation of unknown pure quantum states. This realizes all the nonlocal aspects of the original scheme proposed by Bennett et al. and is equivalent to it up to a local operation. We exhibit results for the teleportation of a linearly polarized state and of an elliptically polarized state. We show that the experimental results cannot be explained in terms of a classical channel alone.Comment: 11 pages LaTeX, 3 figures, 1 page figures captions. The figures and figures captions are not encapsulated; please print them separatel

    Noncyclic Pancharatnam phase for mixed state SU(2) evolution in neutron polarimetry

    Full text link
    We have measured the Pancharatnam relative phase for spin-1/2 states. In a neutron polarimetry experiment the minima and maxima of intensity modulations, giving the Pancharatnam phase, were determined. We have also considered general SU(2) evolution for mixed states. The results are in good agreement with theory.Comment: 5 pages, 4 figures, to be published in Phys.Lett.
    corecore