307 research outputs found

    Operational multipartite entanglement classes for symmetric photonic qubit states

    Full text link
    We present experimental schemes that allow to study the entanglement classes of all symmetric states in multiqubit photonic systems. In addition to comparing the presented schemes in efficiency, we will highlight the relation between the entanglement properties of symmetric Dicke states and a recently proposed entanglement scheme for atoms. In analogy to the latter, we obtain a one-to-one correspondence between well-defined sets of experimental parameters and multiqubit entanglement classes inside the symmetric subspace of the photonic system.Comment: 5 pages, 1 figur

    Interference contrast in multi-source few photon optics

    Full text link
    Many recent experiments employ several parametric down conversion (PDC) sources to get multiphoton interference. Such interference has applications in quantum information. We study here how effects due to photon statistics, misalignment, and partial distinguishability of the PDC pairs originating from different sources may lower the interference contrast in the multiphoton experiments.Comment: 23 pages, 9 figures, journal versio

    A posteriori teleportation

    Get PDF
    The article by Bouwmeester et al. on experimental quantum teleportation constitutes an important advance in the burgeoning field of quantum information. The experiment was motivated by the proposal of Bennett et al. in which an unknown quantum state is `teleported' by Alice to Bob. As illustrated in Fig. 1, in the implementation of this procedure, by Bouwmeester et al., an input quantum state is `disembodied' into quantum and classical components, as in the original protocol. However, in contrast to the original scheme, Bouwmeester et al.'s procedure necessarily destroys the state at Bob's receiving terminal, so a `teleported' state can never emerge as a freely propagating state for subsequent examination or exploitation. In fact, teleportation is achieved only as a postdiction.Comment: 1 page LaTeX including 1 figure. Scientific Correspondence about: "Experimental quantum teleportation" Nature 390, 575 (1997

    Loss Tolerant Optical Qubits

    Get PDF
    We present a linear optics quantum computation scheme that employs a new encoding approach that incrementally adds qubits and is tolerant to photon loss errors. The scheme employs a circuit model but uses techniques from cluster state computation and achieves comparable resource usage. To illustrate our techniques we describe a quantum memory which is fault tolerant to photon loss

    Photonic multipartite entanglement conversion using nonlocal operations

    Full text link
    We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the GHZ and symmetric Dicke state. We also show how the gate can be incorporated into extended graph state networks, and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.Comment: 10 pages, 6 figures, correction of reference list, add Journal ref. and DO

    Probabilistic quantum multimeters

    Full text link
    We propose quantum devices that can realize probabilistically different projective measurements on a qubit. The desired measurement basis is selected by the quantum state of a program register. First we analyze the phase-covariant multimeters for a large class of program states, then the universal multimeters for a special choice of program. In both cases we start with deterministic but erroneous devices and then proceed to devices that never make a mistake but from time to time they give an inconclusive result. These multimeters are optimized (for a given type of a program) with respect to the minimum probability of inconclusive result. This concept is further generalized to the multimeters that minimize the error rate for a given probability of an inconclusive result (or vice versa). Finally, we propose a generalization for qudits.Comment: 12 pages, 3 figure

    Experimental demonstration of four-party quantum secret sharing

    Get PDF
    Secret sharing is a multiparty cryptographic task in which some secret information is splitted into several pieces which are distributed among the participants such that only an authorized set of participants can reconstruct the original secret. Similar to quantum key distribution, in quantum secret sharing, the secrecy of the shared information relies not on computational assumptions, but on laws of quantum physics. Here, we present an experimental demonstration of four-party quantum secret sharing via the resource of four-photon entanglement
    corecore