8,809 research outputs found

    Heteronuclear ionizing collisions between laser-cooled metastable helium atoms

    Get PDF
    We have investigated cold ionizing heteronuclear collisions in dilute mixtures of metastable (2 3S1) 3He and 4He atoms, extending our previous work on the analogous homonuclear collisions [R. J. W. Stas et al., PRA 73, 032713 (2006)]. A simple theoretical model of such collisions enables us to calculate the heteronuclear ionization rate coefficient, for our quasi-unpolarized gas, in the absence of resonant light (T = 1.2 mK): K34(th) = 2.4*10^-10 cm^3/s. This calculation is supported by a measurement of K34 using magneto-optically trapped mixtures containing about 1*10^8 atoms of each species, K34(exp) = 2.5(8)*10^-10 cm^3/s. Theory and experiment show good agreement.Comment: 8 pages, 6 figure

    Formation of fundamental structures in Bose-Einstein Condensates

    Full text link
    The meanfield interaction in a Bose condensate provides a nonlinearity which can allow stable structures to exist in the meanfield wavefunction. We discuss a number of examples where condensates, modelled by the one dimensional Gross Pitaevskii equation, can produce gray solitons and we consider in detail the case of two identical condensates colliding in a harmonic trap. Solitons are shown to form from dark interference fringes when the soliton structure, constrained in a defined manner, has lower energy than the interference fringe and an analytic expression is given for this condition.Comment: 7 pages, 3 figures, requires ioplppt.st

    Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry

    Get PDF
    Transmission spectra of metallic films or membranes perforated by arrays of subwavelength slits or holes have been widely interpreted as resonance absorption by surface plasmon polaritons (SPPs). Alternative interpretations involving evanescent waves diffracted on the surface have also been proposed. These two approaches lead to divergent predictions for some surface wave properties. Using far-field interferometry, we have carried out a series of measurements on elementary one-dimensional (1-D) subwavelength structures with the aim of testing key properties of the surface waves and comparing them to predictions of these two points of view

    Frequency Modulation

    Get PDF
    Contains reports on four research projects

    Collisions of cold magnesium atoms in a weak laser field

    Full text link
    We use quantum scattering methods to calculate the light-induced collisional loss of laser-cooled and trapped magnesium atoms for detunings up to 30 atomic linewidths to the red of the 1S_0-1P_1 cooling transition. Magnesium has no hyperfine structure to complicate the theoretical studies. We evaluate both the radiative and nonradiative mechanisms of trap loss. The radiative escape mechanism via allowed 1Sigma_u excitation is dominant for more than about one atomic linewidth detuning. Molecular vibrational structure due to photoassociative transitions to bound states begins to appear beyond about ten linewidths detuning.Comment: 4 pages with 3 embedded figure

    Transform-limited pulses are not optimal for resonant multiphoton transitions

    Full text link
    Maximizing nonlinear light-matter interactions is a primary motive for compressing laser pulses to achieve ultrashort transform limited pulses. Here we show how, by appropriately shaping the pulses, resonant multiphoton transitions can be enhanced significantly beyond the level achieved by maximizing the pulse's peak intensity. We demonstrate the counterintuitive nature of this effect with an experiment in a resonant two-photon absorption, in which, by selectively removing certain spectral bands, the peak intensity of the pulse is reduced by a factor of 40, yet the absorption rate is doubled. Furthermore, by suitably designing the spectral phase of the pulse, we increase the absorption rate by a factor of 7.Comment: 4 pages, 3 figure

    Control of Raman Lasing in the Nonimpulsive Regime

    Full text link
    We explore coherent control of stimulated Raman scattering in the nonimpulsive regime. Optical pulse shaping of the coherent pump field leads to control over the stimulated Raman output. A model of the control mechanism is investigated.Comment: 4 pages, 5 figure
    • …
    corecore