11,875 research outputs found

    Fine-Structure FeII* Emission and Resonant MgII Emission in z = 1 Star-Forming Galaxies

    Full text link
    We present a study of the prevalence, strength, and kinematics of ultraviolet FeII and MgII emission lines in 212 star-forming galaxies at z = 1 selected from the DEEP2 survey. We find FeII* emission in composite spectra assembled on the basis of different galaxy properties, indicating that FeII* emission is prevalent at z = 1. In these composites, FeII* emission is observed at roughly the systemic velocity. At z = 1, we find that the strength of FeII* emission is most strongly modulated by dust attenuation, and is additionally correlated with redshift, star-formation rate, and [OII] equivalent width, such that systems at higher redshifts with lower dust levels, lower star-formation rates, and larger [OII] equivalent widths show stronger FeII* emission. We detect MgII emission in at least 15% of the individual spectra and we find that objects showing stronger MgII emission have higher specific star-formation rates, smaller [OII] linewidths, larger [OII] equivalent widths, lower dust attenuations, and lower stellar masses than the sample as a whole. MgII emission strength exhibits the strongest correlation with specific star-formation rate, although we find evidence that dust attenuation and stellar mass also play roles in the regulation of MgII emission. Future integral field unit observations of the spatial extent of FeII* and MgII emission in galaxies with high specific star-formation rates, low dust attenuations, and low stellar masses will be important for probing the morphology of circumgalactic gas.Comment: 29 pages, 22 figures, 2 tables; accepted to Ap

    Low energy universality and scaling of Van der Waals forces

    Full text link
    At long distances interactions between neutral ground state atoms can be described by the Van der Waals potential V(r) =-C6/r^6-C8/r^8 - ... . In the ultra-cold regime atom-atom scattering is dominated by s-waves phase shifts given by an effective range expansion p cot d0 (p) = -1/a0 + r0 p^2/2 + ... in terms of the scattering length a0 and the effective range r0. We show that while for these potentials the scattering length cannot be predicted, the effective range is given by the universal low energy theorem r0 = A + B/a0+ C/a0^2 where A,B and C depend on the dispersion coefficients Cn and the reduced di-atom mass. We confront this formula to about a hundred determinations of r0 and a0 and show why the result is dominated by the leading dispersion coefficient C6. Universality and scaling extends much beyond naive dimensional analysis estimates.Comment: 4 pages, 3 figure

    Oscillations of solar and atmospheric neutrinos

    Get PDF
    Motivated by recent results from SuperKamiokande, we study both solar and atmospheric neutrino fluxes in the context of oscillations of the three known neutrinos. We aim at a global view which identifies the various possibilities, rather than attempting the most accurate determination of the parameters of each scenario. For solar neutrinos we emphasise the importance of performing a general analysis, independent of any particular solar model and we consider the possibility that any one of the techniques --- chlorine, gallium or water Cerenkov --- has a large unknown systematic error, so that its results should be discarded. The atmospheric neutrino anomaly is studied by paying special attention to the ratios of upward and downward going nu_e and nu_mu fluxes. Both anomalies can be described in a minimal scheme where the respective oscillation frequencies are widely separated or in non-minimal schemes with two comparable oscillation frequencies. We discuss explicit forms of neutrino mass matrices in which both atmospheric and solar neutrino fluxes are explained. In the minimal scheme we identify only two `zeroth order' textures that can result from unbroken symmetries. Finally we discuss experimental strategies for the determination of the various oscillation parameters.Comment: 20 pages, 7 figures. Final version: one reference added; fit of atmospheric neutrinos improve

    Characterizing the Low-Redshift Intergalactic Medium towards PKS1302-102

    Full text link
    We present a detailed analysis of the intergalactic metal-line absorption systems in the archival HST/STIS and FUSE ultraviolet spectra of the low-redshift quasar PKS1302-102 (z_QSO = 0.2784). We supplement the archive data with CLOUDY ionization models and a survey of galaxies in the quasar field. There are 15 strong Lya absorbers with column densities logN_HI > 14. Of these, six are associated with at least CIII 977 absorption (logN(C^++) > 13); this implies a redshift density dN_CIII/dz = 36+13/-9 (68% confidence limits) for the five detections with rest equivalent width W_r > 50 mA. Two systems show OVI 1031,1037 absorption in addition to CIII (logN(O^+5) > 14). One is a partial Lyman limit system (logN_HI = 17) with associated CIII, OVI, and SiIII 1206 absorption. There are three tentative OVI systems that do not have CIII detected. For one OVI doublet with both lines detected at 3 sigma with W_r > 50 mA, dN_OVI/dz = 7+9/-4. We also search for OVI doublets without Lya absorption but identify none. From CLOUDY modeling, these metal-line systems have metallicities spanning the range -4 < [M/H] < -0.3. The two OVI systems with associated CIII absorption cannot be single-phase, collisionally-ionized media based on the relative abundances of the metals and kinematic arguments. From the galaxy survey, we discover that the absorption systems are in a diverse set of galactic environments. Each metal-line system has at least one galaxy within 500 km/s and 600 h^-1 kpc with L > 0.1 L_*.Comment: 21 pages in emulatepj form, 24 figures, 10 tables, accepted to Ap

    Calibrating the Star Formation Rate at z=1 from Optical Data

    Full text link
    We present a star-formation rate calibration based on optical data that is consistent with average observed rates in both the red and blue galaxy populations at z~1. The motivation for this study is to calculate SFRs for DEEP2 Redshift Survey galaxies in the 0.7<z<1.4 redshift range, but our results are generally applicable to similar optically-selected galaxy samples without requiring UV or IR data. Using SFRs fit from UV/optical SEDs in the AEGIS survey, we explore the behavior of restframe B-band magnitude, observed [OII] luminosity, and restframe (U-B) color with SED-fit SFR for both red sequence and blue cloud galaxies. We find that a SFR calibration can be calculated for all z~1 DEEP2 galaxies using a simultaneous fit in M_B and restframe colors with residual errors that are within the SFR measurement error. The resulting SFR calibration produces fit residual errors of 0.3 dex RMS scatter for the full color-independent sample with minimal correlated residual error in L[OII] or stellar mass. We then compare the calibrated z~1 SFRs to two diagnostics that use L[OII] as a tracer in local galaxies and correct for dust extinction at intermediate redshifts through either galaxy B-band luminosity or stellar mass. We find that a L[OII] - M_B SFR calibration commonly used in the literature agrees well with our calculated SFRs after correcting for the average B-band luminosity evolution in L* galaxies. However, we find better agreement with a local L[OII]-based SFR calibration that includes stellar mass to correct for reddening effects, indicating that stellar mass is a better tracer of dust extinction for all galaxy types and less affected by systematic evolution than galaxy luminosity from z=1 to the current epoch.Comment: 16 pages, 15 figures, emulateapj format, to be submitted to Ap

    Surface wave generation and propagation on metallic subwavelength structures measured by far-field interferometry

    Get PDF
    Transmission spectra of metallic films or membranes perforated by arrays of subwavelength slits or holes have been widely interpreted as resonance absorption by surface plasmon polaritons (SPPs). Alternative interpretations involving evanescent waves diffracted on the surface have also been proposed. These two approaches lead to divergent predictions for some surface wave properties. Using far-field interferometry, we have carried out a series of measurements on elementary one-dimensional (1-D) subwavelength structures with the aim of testing key properties of the surface waves and comparing them to predictions of these two points of view

    A mean field description of jamming in non-cohesive frictionless particulate systems

    Full text link
    A theory for kinetic arrest in isotropic systems of repulsive, radially-interacting particles is presented that predicts exponents for the scaling of various macroscopic quantities near the rigidity transition that are in agreement with simulations, including the non-trivial shear exponent. Both statics and dynamics are treated in a simplified, one-particle level description, and coupled via the assumption that kinetic arrest occurs on the boundary between mechanically stable and unstable regions of the static parameter diagram. This suggests the arrested states observed in simulations are at (or near) an elastic buckling transition. Some additional numerical evidence to confirm the scaling of microscopic quantities is also provided.Comment: 9 pages, 3 figs; additional clarification of different elastic moduli exponents, plus typo fix. To appear in PR

    Archival Literacy Competencies for Undergraduate History Majors

    Get PDF
    Undergraduate history majors need to know how to conduct archival research. This paper describes the second phase of a project to identify “archival literacy” competencies. Faculty, archivists, and librarians from baccalaureate, masters, and doctoral/research institutions commented on a draft list. This resulted in competencies in six major categories: accurately conceive of primary sources; locate primary sources; use a research question, evidence, and argumentation to advance a thesis; obtain guidance from archivists; demonstrate acculturation to archives; and follow publication protocols. Collaborations of archivists, faculty, and librarians can integrate the competencies throughout undergraduate history curricula in their institutions

    Tuning of Crystal Nucleation and Growth by Proteins: Molecular Interactions at Solid-Liquid Interfaces in Biomineralization

    Get PDF
    The mineralized tissues of a bivalve mollusk and a sea urchin are both composed of calcium carbonate crystals that are intimately associated with acidic glycoproteins. In vitro studies in which carboxylate-, carbonate- and phosphate-containing crystals are grown in the presence of partially purified acidic glycoproteins from these two tissues show that some of these macro- molecules are able to interact specifically with certain crystal faces. Significantly all the affected crystal faces contain a common stereochemical motif. Interesting differences, however, were observed in the modes of interaction between the mollusk and sea urchin derived acidic glycoproteins. Only the former can induce oriented calcite nucleation in vitro and only the latter can interact from solution with specific calcite crystal faces. These differences are ascribed in part to the fact that the mollusk macromolecules are much more acidic than those from the sea urchin. Some of the acidic glycoproteins are also occluded inside the growing crystals. In the case of the sea urchin, and not of the mollusk, the proteins are preferentially located at specific crystal planes and their presence influences the mechanical properties of the crystal. A detailed study of these composite crystals by X-ray synchrotron radiation shows how the presence of the protein influences the crystal mosaicity. The interactions revealed by these studies follow well defined stereochemical rules, tuned by electrostatic forces. They, in turn, provide new \u27insight into some of the basic underlying processes occurring in biomineralization
    corecore