7,488 research outputs found

    Gauge-theory approach to planar doped antiferromagnets and external magnetic fields

    Full text link
    A review is given of a relativistic non-Abelian gauge theory approach to the physics of spin-charge separation in doped quantum antiferromagnetic planar systems, proposed recently by the authors. Emphasis is put on the effects of constant external magnetic fields on excitations about the superconducting state in the model. The electrically-charged Dirac fermions (holons), describing excitations about specific points on the fermi surface, e.g. those corresponding to the nodes of a d-wave superconducting gap in high-TcT_c cuprates, condense, resulting in the opening of a Kosterlitz-Thouless-like gap (KT) at such nodes. In the presence of strong external magnetic fields at the surface regions of the planar superconductor, in the direction perpendicular to the superconducting planes, these KT gaps appear to be enhanced. Our preliminary analysis, based on analytic Scwhinger-Dyson treatments, seems to indicate that for an even number of Dirac fermion species, required in our model as a result of gauging a particle-hole SU(2) symmetry, Parity or Time Reversal violation does not necessarily occurs.Based on these considerations, we argue that recent experimental findings, concerning thermal conductivity plateaux of quasiparticles in planar high-TcT_c cuprates in strong external magnetic fields, may indicate the presence of such KT gaps, caused by charged Dirac-fermion excitations in these materials, as suggested in the above model.Comment: 26 pages LATEX, 6 figures (incorporated) (In this revised version references on magnetic catalysis were added, and also a note was added with a comparison of the theoretical results presented here with a second experiment (cond-mat/9709061), reporting on unconventional superconducting phases in certain cuprates). Journal ref.:Based on Invited talk by N.E.M. at the `5th Chia Workshop on Common Trends in Particle and Condensed Matter Physics', Conference Center, Grand-Hotel Chia-Laguna, Chia, Italy, 1-11 September 199

    Carbon Detonation and Shock-Triggered Helium Burning in Neutron Star Superbursts

    Full text link
    The strong degeneracy of the 12C ignition layer on an accreting neutron star results in a hydrodynamic thermonuclear runaway, in which the nuclear heating time becomes shorter than the local dynamical time. We model the resulting combustion wave during these superbursts as an upward propagating detonation. We solve the reactive fluid flow and show that the detonation propagates through the deepest layers of fuel and drives a shock wave that steepens as it travels upward into lower density material. The shock is sufficiently strong upon reaching the freshly accreted H/He layer that it triggers unstable 4He burning if the superburst occurs during the latter half of the regular Type I bursting cycle; this is likely the origin of the bright Type I precursor bursts observed at the onset of superbursts. The cooling of the outermost shock-heated layers produces a bright, ~0.1s, flash that precedes the Type I burst by a few seconds; this may be the origin of the spike seen at the burst onset in 4U 1820-30 and 4U 1636-54, the only two bursts observed with RXTE at high time resolution. The dominant products of the 12C detonation are 28Si, 32S, and 36Ar. Gupta et al. showed that a crust composed of such intermediate mass elements has a larger heat flux than one composed of iron-peak elements and helps bring the superburst ignition depth into better agreement with values inferred from observations.Comment: 11 pages, 11 figures, accepted to ApJ; discussion about onset of detonation discussed in new detail, including a new figur

    The Gauge Fields and Ghosts in Rindler Space

    Full text link
    We consider 2d Maxwell system defined on the Rindler space with metric ds^2=\exp(2a\xi)\cdot(d\eta^2-d\xi^2) with the goal to study the dynamics of the ghosts. We find an extra contribution to the vacuum energy in comparison with Minkowski space time with metric ds^2= dt^2-dx^2. This extra contribution can be traced to the unphysical degrees of freedom (in Minkowski space). The technical reason for this effect to occur is the property of Bogolubov's coefficients which mix the positive and negative frequencies modes. The corresponding mixture can not be avoided because the projections to positive -frequency modes with respect to Minkowski time t and positive -frequency modes with respect to the Rindler observer's proper time \eta are not equivalent. The exact cancellation of unphysical degrees of freedom which is maintained in Minkowski space can not hold in the Rindler space. In BRST approach this effect manifests itself as the presence of BRST charge density in L and R parts. An inertial observer in Minkowski vacuum |0> observes a universe with no net BRST charge only as a result of cancellation between the two. However, the Rindler observers who do not ever have access to the entire space time would see a net BRST charge. In this respect the effect resembles the Unruh effect. The effect is infrared (IR) in nature, and sensitive to the horizon and/or boundaries. We interpret the extra energy as the formation of the "ghost condensate" when the ghost degrees of freedom can not propagate, but nevertheless do contribute to the vacuum energy. Exact computations in this simple 2d model support the claim made in [1] that the ghost contribution might be responsible for the observed dark energy in 4d FLRW universe.Comment: Final version to appear in Phys. Rev. D. Comments on relation with energy momentum computations and few new refs are adde

    Modulus Stabilization with Bulk Fields

    Get PDF
    We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sundrum scenario. The potential for the modulus field that sets the size of the fifth dimension is generated by a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this potential yields a compactification scale that solves the hierarchy problem without fine tuning of parameters.Comment: 8 pages, LaTeX; minor typo correcte

    Role of a_1(1260) resonance in multipion decays of light vector mesons

    Full text link
    The contribution of the a_1(1260) meson to the amplitudes of the decays rho(770) to 4 pi, omega(782) to 5 pi, and phi(1020) to 5 pi is analyzed in the chiral model of pseudoscalar, vector, and axial vector mesons based on the generalized hidden local symmetry added with the anomalous terms. The analysis shows that inclusion of a_1 meson in the intermediate states results in enhancement of the branching ratios of the above decays by the factor ranging from 1.3 to 1.9 depending on the mass of a_1 meson ranging from 1.23 GeV to m_{a_1}=m_rho sqrt{2}=1.09 GeV, the greater factor standing in case of lower mass of the a_1.Comment: 14 pages, 5 figure

    Energy-momentum Density of Gravitational Waves

    Full text link
    In this paper, we elaborate the problem of energy-momentum in general relativity by energy-momentum prescriptions theory. Our aim is to calculate energy and momentum densities for the general form of gravitational waves. In this connection, we have extended the previous works by using the prescriptions of Bergmann and Tolman. It is shown that they are finite and reasonable. In addition, using Tolman prescription, exactly, leads to same results that have been obtained by Einstein and Papapetrou prescriptions.Comment: LaTeX, 9 pages, 1 table: added reference

    The effect of geometry on charge confinement in three dimensions

    Get PDF
    We show that, in contrast to the flat case, the Maxwell theory is not confining in the background of the three dimensional BTZ black-hole (covering space). We also study the effect of the curvature on screening behavior of Maxwell-Chern-Simons model in this space-time.Comment: 8 pages. To be published in Europhysics Letter

    Suppression of Bremsstrahlung at Non-Zero Temperature

    Full text link
    The first-order bremsstrahlung emission spectrum is αdω/ω\alpha d\omega/\omega at zero temperature. If the radiation is emitted into a region that contains a thermal distribution of photons, then the rate is increased by a factor 1+N(ω)1+N(\omega) where N(ω)N(\omega) is the Bose-Einstein function. The stimulated emission changes the spectrum to αTdω/ω2\alpha Td\omega/\omega^{2} for ω≪T\omega\ll T. If this were correct, an infinite amount of energy would be radiated in the low frequency modes. This unphysical result indicates a breakdown of perturbation theory. The paper computes the bremsstrahlung rate to all orders of perturbation theory, neglecting the recoil of the charged particle. When the perturbation series is summed, it has a different low-energy behavior. For ω≪αT\omega\ll\alpha T, the spectrum is independent of ω\omega and has a value proportional to dω/αTd\omega/\alpha T .Comment: 16 pages (plain TeX), figures available on reques

    Critical behavior of the (2+1)-dimensional Thirring model

    Full text link
    We investigate chiral symmetry breaking in the (2+1)-dimensional Thirring model as a function of the coupling as well as the Dirac flavor number Nf with the aid of the functional renormalization group. For small enough flavor number Nf < Nfc, the model exhibits a chiral quantum phase transition for sufficiently large coupling. We compute the critical exponents of this second order transition as well as the fermionic and bosonic mass spectrum inside the broken phase within a next-to-leading order derivative expansion. We also determine the quantum critical behavior of the many-flavor transition which arises due to a competition between vector and chiral-scalar channel and which is of second order as well. Due to the problem of competing channels, our results rely crucially on the RG technique of dynamical bosonization. For the critical flavor number, we find Nfc ~ 5.1 with an estimated systematic error of approximately one flavor.Comment: 28 pages, 14 figure

    Signatures of High-Intensity Compton Scattering

    Full text link
    We review known and discuss new signatures of high-intensity Compton scattering assuming a scenario where a high-power laser is brought into collision with an electron beam. At high intensities one expects to see a substantial red-shift of the usual kinematic Compton edge of the photon spectrum caused by the large, intensity dependent, effective mass of the electrons within the laser beam. Emission rates acquire their global maximum at this edge while neighbouring smaller peaks signal higher harmonics. In addition, we find that the notion of the centre-of-mass frame for a given harmonic becomes intensity dependent. Tuning the intensity then effectively amounts to changing the frame of reference, going continuously from inverse to ordinary Compton scattering with the centre-of-mass kinematics defining the transition point between the two.Comment: 25 pages, 16 .eps figure
    • …
    corecore