16,523 research outputs found

    Comment on "Scalar-tensor gravity coupled to a global monopole and flat rotation curves" by Lee and Lee

    Full text link
    The recent paper by Lee and Lee (2004) may strongly leave the impression that astronomers have established that the rotation curves of spiral galaxies are flat. We show that the old paradigm of Flat Rotation Curves lacks, today, any observational support and following it at face value leads to intrinsically flawed alternatives to the Standard Dark Matter Scenario. On the other side, we claim that the rich systematics of spiral galaxy rotation curves, that reveals, in the standard Newtonian Gravity framework, the phenomenon of dark matter, in alternative scenarios, works as a unique benchmark.Comment: 3 pages, 2 figures, accepted in Phys. Rev.

    Higgs-Flavor Groups, Naturalness, and Dark Matter

    Full text link
    In the absence of low-energy supersymmetry, a multiplicity of weak-scale Higgs doublets would require additional fine-tunings unless they formed an irreducible multiplet of a non-abelian symmetry. Remnants of such symmetry typically render some Higgs fields stable, giving several dark matter particles of various masses. The non-abelian symmetry also typically gives simple, testable mass relations.Comment: Some comments added after Eqs. (2) and (12

    On the Creation of the Universe out of Nothing

    Full text link
    We explain how the Universe was created with no expenditure of energy or initial mass.Comment: To be presented at IWARA 2009 (4th International Workshop on Astronomy and Relativistic Astrophysics), to be held in Brazil, October 200

    The resultant parameters of effective theory

    Full text link
    This is the 4-th paper in the series devoted to a systematic study of the problem of mathematically correct formulation of the rules needed to manage an effective field theory. Here we consider the problem of constructing the full set of essential parameters in the case of the most general effective scattering theory containing no massless particles with spin J > 1/2. We perform the detailed classification of combinations of the Hamiltonian coupling constants and select those which appear in the expressions for renormalized S-matrix elements at a given loop order.Comment: 21 pages, 4 LaTeX figures, submitted to Phys. Rev.

    NVV auger spectra from W(100)

    Get PDF
    The NVV Auger spectrum from a clean W(100) surface has been measured in the second derivative, d^2N (E)/dE^2, mode to enhance fine structure. This measurement is compared with spectra generated from both the self‐convolution of the tungsten valence‐band bulk density of states (obtained from a relativistic APW energy band calculation) and a "restricted convolution" in which only transitions involving electrons from the same valence energy are allowed. The restricted convolution for a model of the Auger process in which both N_6VV and N_7VV transitions contribute offers the best match of theory and experiment. No distinct evidence of Auger emission involving the surface resonance present on W(100) is observed. Effects of H_2 and O_2 adsorption on the Auger spectrum of the W(100) surface are reported

    The gravitational analogue to the hydrogen atom (A summer study at the borders of quantum mechanics and general relativity)

    Get PDF
    This article reports on a student summer project performed in 2006 at the University of Frankfurt. It is addressed to undergraduate students familiar with the basic principles of relativistic quantum mechanics and general relativity. The aim of the project was to study the Dirac equation in curved space time. To obtain the general relativistic Dirac equation we use the formulation of gravity as a gauge theory in the first part. After these general considerations we restrict the further discussion to the special case of the Schwarzschild metric. This setting corresponds to the hydrogen atom, with the electromagnetic field replaced by gravity. Although there is a singularity at the event horizon it turns out that a regular solution of the time independent Dirac equation exists. Finally the Dirac equation is solved numerically using suitable boundary conditions.Comment: 19 pages, 3 figure

    Physical qubits from charged particles: IR divergences in quantum information

    Get PDF
    We consider soft photons effects (IR structure of QED) on the construction of physical qubits. Soft-photons appear when we build charged qubits from the asymptotic states of QED. This construction is necessary in order to include the effect of soft photons on entanglement measures. The nonexistence of free charged particles (due to the long range of QED interactions) lead us to question the sense of the very concept of free charged qubit. In this letter, using the "dressing" formalism, we build physical charged qubits from dressed fields which have the correct asymptotic behavior, are gauge invariant, their propagators have a particle pole structure and are free from infrared divergences. Finally, we discuss the impact of the soft corrections on the entanglement measures.Comment: 4 pages, 2 figures, RevTeX. Version 2: Some references update

    Line element in quantum gravity: the examples of DSR and noncommutative geometry

    Full text link
    We question the notion of line element in some quantum spaces that are expected to play a role in quantum gravity, namely non-commutative deformations of Minkowski spaces. We recall how the implementation of the Leibniz rule forbids to see some of the infinitesimal deformed Poincare transformations as good candidates for Noether symmetries. Then we recall the more fundamental view on the line element proposed in noncommutative geometry, and re-interprete at this light some previous results on Connes' distance formula.Comment: some references added. Proceedings of the Second Workshop on Quantum Gravity and Noncommutative Geometry, Universidade Lusofona, Lisbon 22-24 September 200

    A response to arXiv:1310.2791: A self-consistent public catalogue of voids and superclusters in the SDSS Data Release 7 galaxy surveys

    Full text link
    Recently, Nadathur & Hotchkiss (2013) submitted a paper discussing a new cosmic void catalog. This paper includes claims about the void catalog described in Sutter et al. (2012). In this note, we respond to those claims, clarify some discrepancies between the text of Sutter et al. (2012) and the most recent version of the catalog, and provide some comments on the differences between our catalog and that of Nadathur & Hotchkiss (2013). All updates and documentation for our catalog are available at http://www.cosmicvoids.net.Comment: 3 pages, 1 figure, public catalog available at http://www.cosmicvoids.ne

    Constraints and Hamiltonian in Light-Front Quantized Field Theory

    Full text link
    Self-consistent Hamiltonian formulation of scalar theory on the null plane is constructed following Dirac method. The theory contains also {\it constraint equations}. They would give, if solved, to a nonlinear and nonlocal Hamiltonian. The constraints lead us in the continuum to a different description of spontaneous symmetry breaking since, the symmetry generators now annihilate the vacuum. In two examples where the procedure lacks self-consistency, the corresponding theories are known ill-defined from equal-time quantization. This lends support to the method adopted where both the background field and the fluctuation above it are treated as dynamical variables on the null plane. We let the self-consistency of the Dirac procedure determine their properties in the quantized theory. The results following from the continuum and the discretized formulations in the infinite volume limit do agree.Comment: 11 pages, Padova University preprint DFPF/92/TH/52 (December '92
    corecore