1,477 research outputs found

    Glycine Receptors Support Excitatory Neurotransmitter Release in Developing Mouse Visual Cortex.

    Get PDF
    Glycine receptors (GlyRs) are found in most areas of the brain, and their dysfunction can cause severe neurological disorders. While traditionally thought of as inhibitory receptors, presynaptic-acting GlyRs (preGlyRs) can also facilitate glutamate release under certain circumstances, although the underlying molecular mechanisms are unknown. In the current study, we sought to better understand the role of GlyRs in the facilitation of excitatory neurotransmitter release in mouse visual cortex. Using whole-cell recordings, we found that preGlyRs facilitate glutamate release in developing, but not adult, visual cortex. The glycinergic enhancement of neurotransmitter release in early development depends on the high intracellular to extracellular Cl(-) gradient maintained by the Na(+)-K(+)-2Cl(-) cotransporter and requires Ca(2+) entry through voltage-gated Ca(2+) channels. The glycine transporter 1, localized to glial cells, regulates extracellular glycine concentration and the activation of these preGlyRs. Our findings demonstrate a developmentally regulated mechanism for controlling excitatory neurotransmitter release in the neocortex

    The neutral hydrogen content of galaxies in cosmological hydrodynamic simulations

    Get PDF
    We examine the global HI properties of galaxies in quarter billion particle cosmological simulations using GADGET-2, focusing on howgalactic outflows impactHI content.We consider four outflow models, including a new one (ezw) motivated by recent interstellar medium simulations in which the wind speed and mass loading factor scale as expected for momentumdriven outflows for larger galaxies and energy-driven outflows for dwarfs (σ <75 km s−1). To obtain predicted HI masses, we employ a simple but effective local correction for particle selfshielding and an observationally constrained transition from neutral to molecular hydrogen. Our ezw simulation produces an HI mass function whose faint-end slope of −1.3 agrees well with observations from the Arecibo Fast Legacy ALFA survey; other models agree less well. Satellite galaxies have a bimodal distribution in HI fraction versus halo mass, with smaller satellites and/or those in larger haloes more often being HI deficient. At a given stellar mass, HI content correlates with the star formation rate and inversely correlates with metallicity, as expected if driven by stochasticity in the accretion rate. To higher redshifts, massive HI galaxies disappear and the mass function steepens. The global cosmic HI density conspires to remain fairly constant from z ∼ 5→0, but the relative contribution from smaller galaxies increases with redshift.Department of HE and Training approved lis

    Z boson decay to photon plus Kaluza-Klein graviton in large extra dimensions

    Full text link
    In the large extra dimensional ADD scenario, Z bosons undergo a one-loop decay into a photon and Kaluza-Klein towers of gravitons/gravi-scalars. We calculate such a decay width, extending previous arguments about the general form of the four-dimensional on-shell amplitude. The amplitudes calculated are relevant to processes in other extra dimensional models where the Standard Model fields are confined to a 4-brane.Comment: 47 pages, uses feynmp for diagrams. v2: typographical corrections for letter-sized paper and to correct feynmf parsing error. v3: minor error in polarisation averaging and reference corrected. v4: reflects changes for published version; arithmetic error corrected and reference updated; section on transversality conditions not present in published version retaine

    The Photon Underproduction Crisis

    Full text link
    We examine the statistics of the low-redshift Lyman-alpha forest from smoothed particle hydrodynamic simulations in light of recent improvements in the estimated evolution of the cosmic ultraviolet background (UVB) and recent observations from the Cosmic Origins Spectrograph (COS). We find that the value of the metagalactic photoionization rate required by our simulations to match the observed properties of the low-redshift Lyman-alpha forest is a factor of 5 larger than the value predicted by state-of-the art models for the evolution of this quantity. This mismatch results in the mean flux decrement of the Lyman-alpha forest being underpredicted by at least a factor of 2 (a 10-sigma discrepancy with observations) and a column density distribution of Lyman-alpha forest absorbers systematically and significantly elevated compared to observations over nearly two decades in column density. We examine potential resolutions to this mismatch and find that either conventional sources of ionizing photons (galaxies and quasars) must be significantly elevated relative to current observational estimates or our theoretical understanding of the low-redshift universe is in need of substantial revision.Comment: Submitted to ApJ Letters; 6 pages including 3 figure

    Time evolution of a non-singular primordial black hole

    Full text link
    There is growing notion that black holes may not contain curvature singularities (and that indeed nature in general may abhor such spacetime defects). This notion could have implications on our understanding of the evolution of primordial black holes (PBHs) and possibly on their contribution to cosmic energy. This paper discusses the evolution of a non-singular black hole (NSBH) based on a recent model [1]. We begin with a study of the thermodynamic process of the black hole in this model, and demonstrate the existence of a maximum horizon temperature T_{max}, corresponding to a unique mass value. At this mass value the specific heat capacity C changes signs to positive and the body begins to lose its black hole characteristics. With no loss of generality, the model is used to discuss the time evolution of a primordial black hole (PBH), through the early radiation era of the universe to present, under the assumption that PBHs are non-singular. In particular, we track the evolution of two benchmark PBHs, namely the one radiating up to the end of the cosmic radiation domination era, and the one stopping to radiate currently, and in each case determine some useful features including the initial mass m_{f} and the corresponding time of formation t_{f}. It is found that along the evolutionary history of the universe the distribution of PBH remnant masses (PBH-RM) PBH-RMs follows a power law. We believe such a result can be a useful step in a study to establish current abundance of PBH-MRs.Comment: To appear in Int. J. Mod. Phys.

    The COS-Dwarfs Survey: The Carbon Reservoir Around sub-L* Galaxies

    Full text link
    We report new observations of circumgalactic gas from the COS-Dwarfs survey, a systematic investigation of the gaseous halos around 43 low-mass z ≤\leq 0.1 galaxies using background QSOs observed with the Cosmic Origins Spectrograph. From the projected 1D and 2D distribution of C IV absorption, we find that C IV absorption is detected out to ~ 0.5 Rvir_{vir} of the host galaxies. The C IV absorption strength falls off radially as a power law and beyond 0.5 Rvir_{vir}, no C IV absorption is detected above our sensitivity limit of ~ 50-100 mA˚\AA. We find a tentative correlation between detected C IV absorption strength and star formation, paralleling the strong correlation seen in highly ionized oxygen for L~L* galaxies by the COS-Halos survey. The data imply a large carbon reservoir in the CGM of these galaxies, corresponding to a minimum carbon mass of ≳\gtrsim 1.2×106\times 10^6 M⊙M_\odot out to ~ 110 kpc. This mass is comparable to the carbon mass in the ISM and more than the carbon mass currently in stars of these galaxies. The C IV absorption seen around these sub-L* galaxies can account for almost two-thirds of all WrW_r> 100 mA˚\AA C IV absorption detected at low z. Comparing the C IV covering fraction with hydrodynamical simulations, we find that an energy-driven wind model is consistent with the observations whereas a wind model of constant velocity fails to reproduce the CGM or the galaxy properties.Comment: 18 Pages, 11 Figures, ApJ 796 13

    The Impact of Wind Scalings on Stellar Growth and the Baryon Cycle in Cosmological Simulations

    Get PDF
    Many phenomenologically successful cosmological simulations employ kinetic winds to model galactic outflows. Yet systematic studies of how variations in kinetic wind scalings might alter observable galaxy properties are rare. Here we employ GADGET-3 simulations to study how the baryon cycle, stellar mass function, and other galaxy and CGM predictions vary as a function of the assumed outflow speed and the scaling of the mass-loading factor with velocity dispersion. We design our fiducial model to reproduce the measured wind properties at 25 per cent of the virial radius from the Feedback In Realistic Environments simulations

    The Blue Tip of the Stellar Locus: Measuring Reddening with the SDSS

    Full text link
    We present measurements of reddening due to dust using the colors of stars in the Sloan Digital Sky Survey (SDSS). We measure the color of main sequence turn-off stars by finding the "blue tip" of the stellar locus: the prominent blue edge in the distribution of stellar colors. The method is sensitive to color changes of order 18, 12, 7, and 8 mmag of reddening in the colors u-g, g-r, r-i, and i-z, respectively, in regions measuring 90' by 14'. We present maps of the blue tip colors in each of these bands over the entire SDSS footprint, including the new dusty southern Galactic cap data provided by the SDSS-III. The results disfavor the best fit O'Donnell (1994) and Cardelli et al. (1989) reddening laws, but are well described by a Fitzpatrick (1999) reddening law with R_V = 3.1. The SFD dust map is found to trace the dust well, but overestimates reddening by factors of 1.4, 1.0, 1.2, and 1.4 in u-g, g-r, r-i, and i-z, largely due to the adopted reddening law. In select dusty regions of the sky, we find evidence for problems in the SFD temperature correction. A dust map normalization difference of 15% between the Galactic north and south sky may be due to these dust temperature errors.Comment: 18 pages, 22 figure
    • …
    corecore