174 research outputs found

    Cross-Lingual Cross-Platform Rumor Verification Pivoting on Multimedia Content

    Full text link
    With the increasing popularity of smart devices, rumors with multimedia content become more and more common on social networks. The multimedia information usually makes rumors look more convincing. Therefore, finding an automatic approach to verify rumors with multimedia content is a pressing task. Previous rumor verification research only utilizes multimedia as input features. We propose not to use the multimedia content but to find external information in other news platforms pivoting on it. We introduce a new features set, cross-lingual cross-platform features that leverage the semantic similarity between the rumors and the external information. When implemented, machine learning methods utilizing such features achieved the state-of-the-art rumor verification results

    Model X-ray:Detect Backdoored Models via Decision Boundary

    Full text link
    Deep neural networks (DNNs) have revolutionized various industries, leading to the rise of Machine Learning as a Service (MLaaS). In this paradigm, well-trained models are typically deployed through APIs. However, DNNs are susceptible to backdoor attacks, which pose significant risks to their applications. This vulnerability necessitates a method for users to ascertain whether an API is compromised before usage. Although many backdoor detection methods have been developed, they often operate under the assumption that the defender has access to specific information such as details of the attack, soft predictions from the model API, and even the knowledge of the model parameters, limiting their practicality in MLaaS scenarios. To address it, in this paper, we begin by presenting an intriguing observation: the decision boundary of the backdoored model exhibits a greater degree of closeness than that of the clean model. Simultaneously, if only one single label is infected, a larger portion of the regions will be dominated by the attacked label. Building upon this observation, we propose Model X-ray, a novel backdoor detection approach for MLaaS through the analysis of decision boundaries. Model X-ray can not only identify whether the target API is infected by backdoor attacks but also determine the target attacked label under the all-to-one attack strategy. Importantly, it accomplishes this solely by the hard prediction of clean inputs, regardless of any assumptions about attacks and prior knowledge of the training details of the model. Extensive experiments demonstrated that Model X-ray can be effective for MLaaS across diverse backdoor attacks, datasets, and architectures

    A General Synthesis Strategy for Hierarchical Porous Metal Oxide Hollow Spheres

    Get PDF
    The hierarchical porous TiO2 hollow spheres were successfully prepared by using the hydrothermally synthesized colloidal carbon spheres as templates and tetrabutyl titanate as inorganic precursors. The diameter and wall thickness of hollow TiO2 spheres were determined by the hard templates and concentration of tetrabutyl titanate. The particle size, dispersity, homogeneity, and surface state of the carbon spheres can be easily controlled by adjusting the hydrothermal conditions and adding certain amount of the surfactants. The prepared hollow spheres possessed the perfect spherical shape, monodispersity, and hierarchically pore structures, and the further experiment verified that the present approach can be used to prepare other metal oxide hollow spheres, which could be used as catalysis, fuel cells, lithium-air battery, gas sensor, and so on

    Glycosylphosphatidylinositol-Anchored Anti-HIV scFv Efficiently Protects CD4 T Cells from HIV-1 Infection and Deletion in hu-PBL Mice

    Get PDF
    ABSTRACT Despite success in viral inhibition and CD4 T cell recovery by highly active antiretroviral treatment (HAART), HIV-1 is still not curable due to the persistence of the HIV-1 reservoir during treatment. One patient with acute myeloid leukemia who received allogeneic hematopoietic stem cell transplantation from a homozygous CCR5 Δ32 donor has had no detectable viremia for 9 years after HAART cessation. This case has inspired a field of HIV-1 cure research focusing on engineering HIV-1 resistance in permissive cells. Here, we employed a glycosylphosphatidylinositol (GPI)-scFv X5 approach to confer resistance of human primary CD4 T cells to HIV-1. We showed that primary CD4 T cells expressing GPI-scFv X5 were resistant to CCR5 (R5)-, CXCR4 (X4)-, and dual-tropic HIV-1 and had a survival advantage compared to control cells ex vivo . In a hu-PBL mouse study, GPI-scFv X5-transduced CD4 T cells were selected in peripheral blood and lymphoid tissues upon HIV-1 infection. Finally, GPI-scFv X5-transduced CD4 T cells, after being cotransfused with HIV-infected cells, showed significantly reduced viral loads and viral RNA copy numbers relative to CD4 cells in hu-PBL mice compared to mice with GPI-scFv AB65-transduced CD4 T cells. We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections. IMPORTANCE Blocking of HIV-1 entry is one of most promising approaches for therapy. Genetic disruption of the HIV-1 coreceptor CCR5 by nucleases in T cells is under 2 clinical trials and leads to reduced viremia in patients. However, the emergence of viruses using the CXCR4 coreceptor is a concern for therapies applying single-coreceptor disruption. Here, we report that HIV-1-permissive CD4 T cells engineered with GPI-scFv X5 are resistant to R5-, X4-, or dual-tropic virus infection ex vivo . In a preclinical study using hu-PBL mice, we show that CD4 T cells were protected and that GPI-scFv X5-transduced cells were selected in HIV-1-infected animals. Moreover, we show that GPI-scFv X5-transduced CD4 T cells exerted a negative effect on virus replication in vivo . We conclude that GPI-scFv X5-modified CD4 T cells could potentially be used as a genetic intervention against both R5- and X4-tropic HIV-1 infections

    Microrna Expression Profile and Differentially-Expressed Genes in Prolactinomas Following Bromocriptine Treatment

    Get PDF
    Little is known about the function of microRNAs in prolactinomas treated with bromocriptine. The aim of the study was to explore the microRNAs associated with bromocriptine-treated prolactinomas. Six prolactinoma samples were selected according to whether they received bromocriptine treatment or not before microsurgery, and microRNA expression profiles of bromocriptine-treated and untreated prolactinomas were screened by the miRCURY LNA Array. The differentially expressed microRNAs in microarrays were further validated by stem-loop real-time PCR and subjected to gene ontology analysis and KEGG pathway analysis. In addition, related genes of microRNAs were analyzed by qRT-PCR in 15 prolactinoma samples. The initial analysis by microarrays generated a list of 80 upregulated microRNAs and 71 downregulated microRNAs in treated prolactinomas compared to untreated prolactinomas. miR-206, miR-516b and miR-550 were confirmed to be significantly upregulated, while miR-671-5p was confirmed to be significantly downregulated in treated prolactinomas by qRT-PCR. microRNA-mRNA network analysis integrating GO and KEGG pathway annotation displayed some critical factors. Platelet-derived growth factor α polypeptide (PDGFA) and bone morphogenetic protein 4 (BMP4), were verified to be differentially expressed between the two groups. PDGFA was significantly upregulated in treated prolactinomas, while BMP4 was significantly downregulated in treated prolactinomas. Our study reveals differential expression of microRNAs in prolactinoma after pharmacotherapy. Specific microRNAs may be involved in the inhibition or promotion of prolactinoma tumor growth impacted by bromocriptine pharmacotherapy. PDGFA and BMP4 may be involved in the pharmacotherapy mechanism of prolactinoma

    Plasmacytoid dendritic cells promote HIV-1-induced group 3 innate lymphoid cell depletion

    Get PDF
    Group 3 innate lymphoid cells (ILC3s) have demonstrated roles in promoting antibacterial immunity, maintaining epithelial barrier function, and supporting tissue repair. ILC3 alterations are associated with chronic inflammation and inflammatory disease; however, the characteristics and relevant regulatory mechanisms of this cell population in HIV-1 infection are poorly understood due in part to a lack of a robust model. Here, we determined that functional human ILC3s develop in lymphoid organs of humanized mice and that persistent HIV-1 infection in this model depletes ILC3s, as observed in chronic HIV-1-infected patients. In HIV-1-infected mice, effective antiretroviral therapy reversed the loss of ILC3s. HIV-1-dependent reduction of ILC3s required plasmacytoid dendritic cells (pDCs), IFN-I, and the CD95/FasL pathway, as targeted depletion or blockade of these prevented HIV-1-induced ILC3 depletion in vivo and in vitro, respectively. Finally, we determined that HIV-1 infection induces CD95 expression on ILC3s via a pDC-and IFN-I-dependent mechanism that sensitizes ILC3s to undergo CD95/FasL-mediated apoptosis. We conclude that chronic HIV-1 infection depletes ILC3s through pDC activation, induction of IFN-I, and CD95-mediated apoptosis

    Elucidate microbial characteristics in a fullscale treatment plant for offshore oil produced wastewater

    Get PDF
    Oil-produced wastewater treatment plants, especially those involving biological treatment processes, harbor rich and diverse microbes. However, knowledge of microbial ecology and microbial interactions determining the efficiency of plants for oil-produced wastewater is limited. Here, we performed 16S rDNA amplicon sequencing to elucidate the microbial composition and potential microbial functions in a full-scale well-worked offshore oil-produced wastewater treatment plant. Results showed that microbes that inhabited the plant were diverse and originated from oil and marine associated environments. The upstream physical and chemical treatments resulted in low microbial diversity. Organic pollutants were digested in the anaerobic baffled reactor (ABR) dominantly through fermentation combined with sulfur compounds respiration. Three aerobic parallel reactors (APRs) harbored different microbial groups that performed similar potential functions, such as hydrocarbon degradation, acidogenesis, photosynthetic assimilation, and nitrogen removal. Microbial characteristics were important to the performance of oil-produced wastewater treatment plants with biological processes

    mammalian target of rapamycin complex 2 controls folding and stability of Akt and protein kinase C

    Get PDF
    The target of rapamycin (TOR), as part of the rapamycinsensitive TOR complex 1 (TORC1), regulates various aspects of protein synthesis. Whether TOR functions in this process as part of TORC2 remains to be elucidated. Here, we demonstrate that mTOR, SIN1 and rictor, components of mammalian (m)TORC2, are required for phosphorylation of Akt and conventional protein kinase C (PKC) at the turn motif (TM) site. This TORC2 function is growth factor independent and conserved from yeast to mammals. TM site phosphorylation facilitates carboxyl-terminal folding and stabilizes newly synthesized Akt and PKC by interacting with conserved basic residues in the kinase domain. Without TM site phosphorylation, Akt becomes protected by the molecular chaperone Hsp90 from ubiquitination-mediated proteasome degradation. Finally, we demonstrate that mTORC2 independently controls the Akt TM and HM sites in vivo and can directly phosphorylate both sites in vitro. Our studies uncover a novel function of the TOR pathway in regulating protein folding and stability, processes that are most likely linked to the functions of TOR in protein synthesis
    corecore